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Introduction

About this book

This book has been written to cover the
Cambridge AS & A level International
Mathematics (9709) course, and is fully aligned
to the syllabus. The first six chapters of the book
cover material applicable to both Pure 2 and
Pure 3, and the final five chapters cover Pure 3
material only.

In addition to the main curriculum content, you

will find:

e ‘Maths in real-life] showing how principles
learned in this course are used in the real
world.

o Chapter openers, which outline how each
topic in the Cambridge 9709 syllabus is used
in real-life.

o ‘Did you know?’ boxes (as shown below),
which give interesting side-notes beyond the

scope of the syllabus.

The book contains the following features:

Note Did you know?

Advice on
calculator
use

Throughout the book, you will encounter
worked examples and a host of rigorous
exercises. The examples show you the important
techniques required to tackle questions. The
exercises are carefully graded, starting from

a basic level and going up to exam standard,
allowing you plenty of opportunities to practise
your skills. Together, the examples and exercises
put maths in a real-world context, with a truly
international focus.

At the start of each chapter, you will see a list

of objectives that are covered in the chapter.
These objectives are drawn from the Cambridge
AS and A level syllabus. Each chapter begins
with a Before you start section and finishes with
a Summary exercise and Chapter summary,
ensuring that you fully understand each topic.

Each chapter contains key mathematical terms
to improve understanding, highlighted in colour,
with full definitions provided in the Glossary of
terms at the end of the book.

The answers given at the back of the book are
concise. However, when answering exam-style
questions, you should show as many steps

in your working as possible. All exam-style
questions, as well as Exam-style papers 2A, 2B,
3A and 3B, have been written by the authors.



About the authors

Brian Western has over 40 years of experience in teaching mathematics
up to A Level and beyond, and is also a highly experienced examiner.
He taught mathematics and further mathematics, and was an Assistant
Headteacher in a large state school. Brian has written and consulted on a
number of mathematics textbooks.

James Nicholson is an experienced teacher of mathematics at secondary
level, having taught for 12 years at Harrow School and spent 13 years as
Head of Mathematics in a large Belfast grammar school. He is the author
of several A Level texts, and editor of the Concise Oxford Dictionary

of Mathematics. He has also contributed to a number of other sets of
curriculum and assessment materials, is an experienced examiner and has
acted as a consultant for UK government agencies on accreditation of new
specifications.

Jean Linsky has been a mathematics teacher for over 30 years, as well

as Head of Mathematics in Watford, Herts, and is also an experienced

examiner. Jean has authored and consulted on numerous mathematics
textbooks.

A note from the authors

The aim of this book is to help students prepare for the Pure 2 and Pure 3
units of the Cambridge International AS and A Level mathematics syllabus,
although it may also be useful in providing support material for other AS
and A Level courses. The book contains a large number of practice questions,
many of which are exam-style.

In writing the book we have drawn on our experiences of teaching
mathematics and Further mathematics to A Level over many years as well
as on our experiences as examiners, and our discussions with mathematics
educators from many countries at international conferences.
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iy Syllabus: Cambridge International AS & A Level
R Mathematics: Pure Mathematics 2 & 3 (9709)

PURE MATHEMATICS 2 & 3 ‘ Student Book

Syllabus overview

Unit P2: Pure Mathematics 2 (Paper 2)

Knowledge of the content of unit P1 is assumed and candidates may be required to demonstrate such knowledge
in answering questions.

1. Algebra

¢ understand the meaning of |x|, sketch the graph of y = |ax + b| and use relations such Pages 2-17
asla|=|b| @ a*=h%and |x—a| < b & a—-b < x <a + b when solving equations and
inequalities;

e divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial, and Pages 2-17

identify the quotient and remainder (which may be zero);

e use the factor theorem and the remainder theorem, e.g. to find factors, solve polynomial Pages 2-17
eqguations or evaluate unknown coefficients.

2. Logarithmic and exponential functions

* understand the relationship between logarithms and indices, and use the laws of Pages 18-39
logarithms (excluding change of base);

e understand the definition and properties of e* and In x, including their relationship as Pages 18-39
inverse functions and their graphs;

e use logarithms to solve equations and inegualities in which the unknown appears in Pages 18-39
indices;

* use logarithms to transform a given relationship to linear form, and hence determine Pages 18-39

unknown constants by considering the gradient and/or intercept.
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3. Trigonometry

* understand the relationship of the secant, cosecant and cotangent functions to cosine, Pages 40-65
sine and tangent, and use properties and graphs of all six trigonometric functions for
angles of any magnitude;
* use trigonometrical identities for the simplification and exact evaluation of expressions Pages 40-65
and in the course of solving equations, and select an identity or identities appropriate to
the context, showing familiarity in particular with the use of:
— sec?O=1+tan? @and cosec® 8=1 + cot® 6,
— the expansions of sinfA £ B), cos(A + B) and tan(A + B),
— the formulae for sin 24, cos 24 and tan 24,
— the expressions of a sin@+ b cos @in the forms R sin(6+ &) and R cos(6 + a).
4. Differentiation
e use the derivatives of &, in x, sin x, cos x, tan x, together with constant multiples, sums, Pages 68-90
differences and composites;
e differentiate products and quotients; Pages 68-90
e find and use the first derivative of a function which is defined parametrically or implicitly. Pages 68-90

5. Integration

e extend the idea of ‘reverse differentiation’ to include the integration of e+, yore =

sinfax + b), cos(ax + b) and sec? (ax + b) (knowledge of the general method
of integration by substitution is not required);

* use trigonometrical relationships (such as double-angle formulae) to facilitate the
integration of functions such as cos? x;

* Use the trapezium rule to estimate the value of a definite integral, and use sketch graphs
in simple cases to determine whether the trapezium rule gives an over-estimate or an
under-estimate.

Pages 91-116

Pages 91-116

Pages 91-116

6. Numerical solution of equations

* |ocate approximately a root of an equation, by means of graphical considerations and/or
searching for a sign change;

¢ understand the idea of, and use the notation for, a sequence of approximations which
converges to a root of an equation;

* understand how a given simple iterative formula of the form x_ . = F( x ) relates to
the equation being solved, and use a given iteration, or an iteration based on a given
rearrangement of an equation, to determine a root to a prescribed degree of accuracy
(knowledge of the condition for convergence is not included, but candidates should
understand that an iteration may fail to converge).

Pages 117-133

Pages 123-140

Pages 123-140
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Unit P3: Pure Mathematics (Paper 3)

Knowledge of the content of unit P1 is assumed and candidates may be required to
demonstrate such knowledge in answering questions.

1. Algebra
= understand the meaning of |x|, sketch the graph of y = |ax + b| and use relations such Pages 2-17
as

la| = |b| & a?=b?and
|x—al<beoa-b<x<a+bh
when solving equations and inequalities;

e divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial, Pages 2-17
and identify the quotient and remainder (which may be zero);

¢ use the factor theorem and the remainder theorem, e.g. to find factors, solve Pages 2-17
polynomial equations or evaluate unknown coefficients;

e recall an appropriate form for expressing rational functicns in partial fractions, and Pages 136-153
carry out the decomposition, in cases where the denominator is no more complicated
than:

- (ax + b)lex + d)ex + 1),

- ([ax + b)(cx + d)p?,

- lax + b)l* + ¢7),

and where the degree of the numerator does not exceed that of the denominator;
e use the expansion of (1 + x)7, where n is a rational number and Ixl<1 (finding a general Pages 1562-169

term is not included, but adapting the standard series to expand e.g. (2 - % x)is
included).

2. Logarithmic and exponential functions

e understand the relationship between logarithms and indices, and use the laws of Pages 18-39
logarithms (excluding change of base);

e understand the definition and properties of e* and In x, including their relationship as Pages 18-39
inverse functions and their graphs;

e use logarithms to solve equations of the form a* = b, and similar inequalities; Pages 18-39

* use logarithms to transform a given relationship to linear form, and hence determine Pages 18-39

unknown constants by considering the gradient and/or intercept.
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3. Trigonometry

* understand the relationship of the secant, cosecant and cotangent functions to cosine, Pages 40-65
sine and tangent, and use properties and graphs of all six trigonometric functions for
angles of any magnitude;
* use trigonometrical identities for the simplification and exact evaluation of expressions Pages 40-65
and in the course of solving equations, and select an identity or identities appropriate to
the context, showing familiarity in particular with the use of:
-sec? B=1 +tan® 6 and cosec® 6= 1 + cot?,
- the expansions of sinlA = B), cos(A =+ B) and tan(A + B),
- the formulae for sin 2A, cos 2A and tan 24,
- the expressions of a sin 6 + b cos 6in the forms R sin(6 + a) and R cos(@ + a).
4. Differentiation
e use the derivatives of &, In x, sin x, cos x, tan x, tan™ x, together with constant Pages 68-90
multiples, sums, differences and composites;
e differentiate products and quotients; Pages 68-90
e find and use the first derivative of a function which is defined parametrically or implicitly. Pages 68-90

5. Integration

;
ax+hb’

s extend the idea of ‘reverse differentiation’ to include the integration of e¥~?,

sinfax + b), coslax + b), sec(ax + b) and Frad
* use trigonometrical relationships (such as double-angle formulae) to facilitate the
integration of functions such as cos® x;

* integrate rational functions by means of decomposition into partial fractions (restricted
1o the types of partial fractions specified in paragraph 1 above);

. ] and integrate, for example, X

-r! {X) ’ g ’ p ’XE + 1

* recognise when an integrand can usefully be regarded as a product, and use integration
by parts to integrate, for example, x sin 2x, x* &* or In x;

* recognise an integrand of the form or tan x;

e use a given substitution to simplify and evaluate either a definite or an indefinite integral;

= use the trapezium rule to estimate the value of a definite integral, and use sketch graphs
in simple cases to determine whether the trapezium rule gives an over-estimate or an
under-estimate.

Pages 91-116 and
Pages 170-197

Pages 97-122

Pages 154-181

Pages 170-197
Pages 170-197

Pages 170-197
Pages 97-122
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6. Numerical solution of equations

* |ocate approximately a root of an equation, by means of graphical considerations and/or Pages 117-133
searching for a sign change;

¢ understand the idea of, and use the notation for, a sequence of approximations which Pages 117-133
converges to a root of an equation;

* understand how a given simple iterative formula of the form x_ . = F(x ) relates to the Pages 117-133
eqguation being solved, and use a given iteration, or an iteration based on a given
rearrangement of an equation, to determine a root to a prescribed degree of accuracy
(knowledge of the condition for convergence is not included, but candidates should

understand that an iteration may fail to converge).

7. Vectors

e d

* use standard notations for vectors, i.e. [x}xhyj, y |, xi+yj+zk, AB, a; Pages 182-214
£ z

* carry out addition and subtraction of vectors, and multiplication of a vector by a scalar, Pages 182-214
and interpret these operations in geometrical terms;

s calculate the magnitude of a vector, and use unit vectors, displacement vectors and Pages 182-214
position vectors;

e understand the significance of all the symbols used when the equation of a straight Pages 182-214
line is expressed in the form r = a + th, and find the equation of a line, given sufficient
information;

* determine whether two lines are parallel, intersect or are skew, and find the point of Pages 182-214
intersection of two lines when it exists;

e use formulae to calculate the scalar product of two vectors, and use scalar products in Pages 182-214
problems involving lines and points.

8. Differential equations

e formulate a simple statement involving a rate of change as a differential equation, Pages 215-240
including the introduction if necessary of a constant of proportionality;

¢ find by integration a general form of solution for a first order differential equation in which Pages 215-240
the variables are separable;

® Use an initial condition to find a particular solution; Pages 215240

* interpret the solution of a differential equation in the context of a problem being Pages 215240

modelled by the equation.
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9. Complex numbers

understand the idea of a complex number, recall the meaning of the terms real part,
imaginary part, modulus, argument, conjugate, and use the fact that two complex
numbers are equal if and only if both real and imaginary parts are equal;

carry out operations of addition, subtraction, multiplication and division of two complex
numbers expressed in cartesian form x + iy;

use the result that, for a polynomial equation with real coefficients, any non-real roots
occur in conjugate pairs;
represent complex numbers geometrically by means of an Argand diagram;

carry out operations of multiplication and division of two complex numbers expressed in
polar form r{cos 0 + i sin 6) =r &%;

find the two square roots of a complex number;

understand in simple terms the geometrical effects of conjugating a complex number
and of adding, subtracting, multiplying and dividing two complex numbers;

illustrate simple equations and inequalities involving complex numbers by means of loci
inan Argand diagram, e.g. lz-al<k lz-al=1z-b |, arglz-a) = o

Pages 241-275

Pages 241-275

Pages 241-275

Pages 241-275
Pages 241-275

Pages 241-275
Pages 241-275

Pages 241-275




Algebra

Objectives
o Understand the meaning of |x|, sketch the graph of y = |ax + b| and use relations such as

la| = |b| <> a*= b*and |x — a| < b <> a - b < x < a + b when solving equations and inequalities.
o Divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial,

and identify the quotient and remainder (which may be zero).
o Use the factor theorem and the remainder theorem, e.g. to find factors, solve

polynomial equations or evaluate unknown coefficients.

Before you start
You should know how to:

1. Do long division,
e.g. 357 + 21

17
21)357
21
147
147 Therefore 222 = 17
0 21
2. Find the remainder,
e.g. 461 + 37
12
37)461
37
91

74 Remainder = 17
17

Algebra is used extensively in mathematics, chemistry, physics, economics
and social sciences. For example, the study of polynomials in astrophysics
has led to our understanding of gravitational lensing.

Gravitational lensing occurs when light from a distant source bends around
a massive object (such as a galaxy) between a source and an observer.
Multiple images of the same object may be seen. Here, the ‘Einstein Cross’,
four images of a very distant supernova, is seen in a photograph taken by
the Hubble telescope. The supernova is at a distance of approximately 8
billion light years, and is 20 times further away than the galaxy, which is at
a distance of 400 million light years. The light from the supernova is bent
in its path by the gravitational field of the galaxy. This bending produces
the four bright outer images. The bright central region of the galaxy is seen
as the central object. This phenomena was predicted by Einstein’s general
theory of relativity published in 1915, but was not observed until 1979.

Skills check:

1.

Find the following using long division.
a) 608+ 19

b) 2774 + 38
c) 1081 +23
d) 1392 +24

Find the remainder of the following after
doing long division.

a) 923 +21

b) 742 + 32

¢) 1527 + 43

d) 4258 +26



1.1 The modulus function

The modulus of a real number is the magnitude of that number.

If we have a real number x, then the modulus of x is written as ‘xl We say this as ‘mod x’

Thus |2| =2and |—2| = 2, and if we write |x| < 2 this means that -2 < x < 2.

The modulus function f(x) = }x‘ is defined as

|x|=x for x20

|x|:—x for x<0

Consider the impact that the modulus function has by looking at the graphs
ofy=x-1landy=|x-1]|.

Ya

7 Note: For f(x) < 0, |f(x)] = —f{x).

When graphing y = |f(x)|, we reflect the graph of

y = f(x) in the x-axis whenever f(x) < 0.

Example 1
Solve the equation |x e 21 = i3x|.

R P R R PR RN R RPNy

Method 1: Using a graph

W : Sketch the graphs and find where they
y=-(3x =ir
Al intersect.
~ i - The lines cannot be drawn below the x-axis.
B
AX] For x <0, ]3x| =—(3x)
4.4 -2 -{2' 19 5 42 For x < -2, |x + 2| =—(x+2)
0
Graphs intersect at A and B.
AtA, x+2=-3x < At A, the line y = x + 2 intersects the line y = —(3x).

dx=-2=>x=—-
2

AtB,x+2=3x <—————— At B, the line y = x + 2 intersects the line y = 3x.
2x=2=x=1

xzwlorle
2

P Continued on the next page
Algebra

3



Method 2: Squaring both sides of the equation

(x+2)*=(3x)" <—

R ‘“‘“‘“"“m-‘ﬁ______ We do this to ensure both sides of the equation are
X+ dx+ 4 =9x° positive.
8x’—4x-4=0
2xP-x-1=0

2x+ 1)(x-1)=0
Note: You can only use this method if the variable

1
A== 3 orx=1 (e.g. x) is inside the modulus expression.

Method 3: Removing modulus signs by equating the left-hand side
with both ‘plus and minus’ the right-hand side

X+2=3x or x+2=-3x
D= or 4x=-2

-—

—— We get the same result if we say 3x = =(x + 2).

=1l or x=-——
2

Example 2
Solve the inequality |4x & 3| > ‘2x = l|.

Sketch the graphs and find where they intersect.
) The lines cannot be drawn below the x-axis.
I=A Porx<—%, 4x+3|=—(4x+3)
& Forx<l, 2x—1|:—(2x~1)
i 2
~ Graphs meet at A and B.
A
At A, (dr+3) = =Ox-1) At A, the line y = —(4x + 3) intersects the line
y=—(2x-1).
2x=—4 x=—2
AtB Ax+3 = ~(x- 1) - At B, the line y = 4x + 3 intersects the line
y=—(2x-1).
bx=-2, x= -
3

We want the region where ‘4x e 3| > |2x - 1‘.
This is where the ‘blue’ lines are above the ‘green’ lines.

x<72andx>~%

P> Continued on the next page
The modulus function




Method 2: Squaring both sides of the inequality

We can do this because we know both
|4x + 3| and |2x — 1| are positive so
162+ 24x+ 9> 4x —4x+ 1 squaring them will not change the inequality.

12x* +28x+8>0

(dx +3)2> (2x - 1)? -—

3 +T7x+2>0

Bx+ 1)(x+2)>0 Draw a rough sketch to see where y > 0.
: ____—— There are two separate blue regions that
- satisfy y > 0.
=0 S _,_-«’72
G e o L — There are two separate regions that satisfy
' 3 y>0.

Method 3: Removing modulus signs by equating the left-hand side with
both ‘plus and minus’ the right-hand side
First find where the graphs of y = |[4x + 3| and y = |2x - 1] intersect
(the values of x at these points are called the critical values).
4x+3=2x-1 or 4x+3=-(2x-1)
2x=-4 or 6x =-2

x=—2 or x= ui -+ - This gives us the two critical values.

3

To find the correct inequalities you need to take values
of x on either side of the critical values.

Take values on either side of x = -2 and

1
x=——

3

3 -2 =

=Y

A

T
10
3

x=-3, 4x+3\=9and|2x—1\=7

Thus |4x = 3‘ 2 |2x = 1} ,50x< -2 - One of the solution regions is less than —2.
is one region where |4x S 3| > |2x = 1‘

When x = -1,

4x +3|=1andf2x -1=3
|4x + 3‘ > |2x - 1‘ is false so there is no solution
between -2 and —%, so we do not require this region.
When x =0, |[4x + 3| =3and [2x - 1| = 1
One of the solution regions is greater

Thus |4x A 3| = l2x = 1| 50 X > —% BN i
3

x<—-2 or x>—%

Algebra




Exercise 1.1

1. Solve each of these equations algebraically.

a) [1-24=3 b) |x—3[=|x+1]
<) \5x—2|=|2x| d) |5—4x|:4

e) [2x —1|=|x+2] f) |x|=[4 - 2x]

g) }3x+1|=|4—2x| h) |2x—6|=\3x+1|
i) }x+4|=|3x+1\ j) |1—3x|=|5x—3|
K) 3fx— 4] =|x +2] ) 5px—3=4fx—3

2. Solve each of these inequalities algebraically.
a) ‘2x—3|<‘x| b) |x—1|24

) \x+3\2|2x+2| d) |2x+3|>x+6

3. Solve each of these inequalities graphically.

a) ‘x+6|£3|x—2| b) |3x—2|<|x+4|
) |2xf< |l - A d) 5<[2x -1

e) 2|x—1|<|x+3| f) |2x+1\z|1—4x|
g |x+2<2x+1 h) [3x -1 <|x + 3|

1.2 Sketching linear graphs of the form y =a|x| + b

We have sketched graphs of the form y = |ax + b| in section 1.1. Using the information given in P1
Chapter 3 on transformations, we can sketch graphs of the form y = alx| + b.

Example 3
Slketch the following graphs.
a) y=|[2x-4] b) y=2/x|-4
a) YA y=x-4
;1..
2
. — «+————— First sketch the graph without the modulus.
2 /'2 4 X
—2 -
-4
/

P Continued on the next page
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““—— Then reflect the negative y values in the x-axis.

)
b)
Y,
i S T graph of [x].
\
2 9 2

Then stretch the graph by a stretch factor of 2 in the direction
of the y-axis.

0
Then translate the graph by the vector (_4]

When y=0,x=2or -2.

Exercise 1.2
1. Sketch the following.

a) i) y=|x+1]| ii) y=|x]+1
b) i) y=|3x+2| ii) y:3|x|+2
© i) y=|2x-2| i) y=2x-2|
d) i) y:|§x+3‘ ii) y:%|x|+3
e) i) y=|-x i) y=—|x|

f) i) y=[3-x] ii) y=3-[x]

Algebra




1.3 Division of polynomials

We can use long division to divide a polynomial by another polynomial.

Example 4
Divide »° - 5x2 + x + 10 by (x - 2).

x*-3x—- 5
x=2)x* =52+ x+ 10 X%+ x = %, 50 multiply (x — 2) by 22,
x* - 2x? /
3224+ x+10 Subtract (x® — 2x? ) from (x® — 5x? ) and bring down (+ x + 10).
-3x% + 6x

=50+ 10
=50+ 10

—3x% = x = 3x, so multiply (x — 2) by —3x.

/|

Subtract (3x? + 6x) from (3x?+ x) and bring down + 10,

We cannot continue the process because (—5x + 10) — (=5x + 10) = 0.

Thus (x* - 5x2+x+10) + (x-2)=x>-3x-5

The expression (x° — 5x% + x + 10) is called the dividend, (x - 2) is called
the divisor, and (x? - 3x — 5) is called the quotient. When we subtract
(—5x + 10) from (—5x + 10) we are left with nothing, so we say there is
no remainder. Because there is no remainder, we can say that (x — 2) is a
factor of x* - 5x2 + x + 10.

Example 5
Find the remainder when 4x° — 7x - 1 is divided by (2x + 1).

R R PR RN RN RN RN NN

22— "x—3 ) . . L . )
ik 1) 0T As there is no term in x2 in the dividend, it is useful to write

0x? as part of the dividend.
2x*-7x-1

-2 - «x
—6x -1
—6x -3

+ 2

(4x? + 2x) = 2x?, so multiply (2x + 1) by 2x2,
Subtract (4x°+ 2x2) from (4x°+ 0x°) and bring down —7x — 1.

(=2x% = 2x) = —x, so multiply (2x + 1) by —x.

/]

Subtract (—2x? — x) from (—2x? — 7x) and bring down —1.

Subtract (—6x — 3) from (—6x — 1) to get a remainder of +2.

We cannot continue the process as 2 cannot be divided by (2x + 1).
Thus, when (4x° - 7x - 1) is divided by (2x + 1), the remainder is 2.

Division of polynomials



Looking at Example 5 we can write
(4x*-7x-1)=(2x¥-x-3)2x+ 1) +2

In general:

f(x) = quotient x divisor + remainder

Exercise 1.3
1. Divide
a) X¥+3x%+3x+2by(x+2)
b) ¥ -2x*+6x+9by (x+1)
) X’-3x"+6x—-8by(x-2)
d) *+x*-3x-2by(x+2)
e) 2x’-6x"+7x—-21by(x-3)
Hint: In part (g), use the same

— 202 _
£) 3x°-20x° + 102+ 12 by (x - 6) method as when dividing by a linear
g) 6x'+5x°+5x2 + 10x + 7 by (3x2 - 2x + 4). expression. State any remainder.

2. Find the remainder when
a) 6x° +28x* — 7x + 10 is divided by (x + 5)

b) 2x*+ x* + 5x — 4 is divided by (x — 1)
) x°+2x*—17x — 2 is divided by (x - 3)
d) 2x°+3x" — 4x + 5is divided by (x* + 2)
e) 4x’ - 5x+ 4 is divided by (2x - 1)

f) 3x°-x?+ 1is divided by (x + 2).

3. Show that (2x + 1) is a factor of 2x* - 3x> + 2x + 2.

4. a) Showthat (x — 1) isa factor of x* - 6x> + 11x — 6.
b) Hence factorise x* - 6x* + 11x — 6.

5. Show that when 4x° - 6x? + 5 is divided by (2x - 1) the remainder is 4.
6. Divide x*+ 1 by (x + 1).

7. TFind the quotient and the remainder when x* + 2x° + 3x* + 7
is divided by (x* + x + 1).

8. Find the quotient and the remainder when 2x* + 3x* — 4x + 5 is divided
by (x + 2).

Algebra




9. a) Show that (2x — 1) is a factor of 12x° + 16x* — 5x — 3.
b) Hence factorise 12x* + 16x% — 5x — 3.

10. The expression 2x> — 5x> — 16x + k has a remainder of —6 when
divided by (x - 4).
Find the value of k.

11. Find the quotient and the remainder when 2x* — 8x° — 3x2+ 7x — 7
is divided by (x? - 3x — 5).

12. The polynomial x* + x* — 5x2 + ax — 4 is denoted by p(x). It is
given that p(x) is divisible by (x*+ 2x — 4).
Find the value of a.

1.4 The remainder theorem

You can find the remainder when a polynomial is divided by (ax - b) by using
the remainder theorem.

We know that if f(x) is divided by (x — a) then f(x) = quotient x (x — a) + remainder.
When x = g, f(a) = quotient x (a — a) + remainder = remainder.

Thus f(a) = remainder.

When a polynomial f(x) is divided by (x - a), the remainder is f(a).

When a polynomial f(x) is divided by (ax - b), the remainder is f (%)

Example 6
Find the remainder when 4x° + x? — 3x + 7 is divided by (x + 2).

hesssnnnsnanne sessssnsenean R N T N NessssRNERERORRBR RS sessane sennne sesessnne ITEEr

flx) =4 +x*-3x+7 < Write the polynomial as a function.

f(-2) =4(-2)° + (-2 -3(-2) + 7 “——— (x+2)=0= x=-2, socalculate f{-2).
=-32+4+6+7=-15

The remainder is —15.

The remainder theorem




Example 7
When 16x* — ax® + 8x* — 4x — 1 is divided by (2x —1), the remainder is 3.

Find the value of a.
flx) =16x" —ax® + 8> —4x -1 <t~ \Write the polynomial as a function.
SO it 1y 1
‘{E)_]s(z) ﬁa(z) +8(2) Wzl(z)ﬁ1 - (2x—1):0:>x=%,socalculatef(%).
=1- é a+2-2-1=3 <« Equate this to 3, since the remainder is 3.

Lla=3=a=-24
8

Exercise 1.4
1. Find the remainder when
a) 2x°+ 8x* — x + 4 is divided by (x — 3)

b) 5x*—-3x"-2x?+ x— | is divided by (x + 1)
c) x4+ 4x%+ 8x — 3 is divided by (2x + 1)

d) 3x°-2x?—5x - 7 is divided by (2 — x)

e) 9x°-8x+ 3isdivided by (1 — x)

f) 243x* - 27x° + 6x + 4 is divided by (3x - 2).

2. When ax®+ 16x° — 5x — 5 is divided by (2x — 1) the remainder is —2.
Find the value of a.

3. 'The polynomial 4x° — 4x* + ax + 1, where a is a constant, is denoted
by p(x). When p(x) is divided by (2x — 3) the remainder is 13.
Find the value of a.

4. The polynomial x* + ax? + bx + 1, where a and b are constants, is denoted
by p(x). When p(x) is divided by (x — 2) the remainder is 9 and when
p(x) is divided by (x + 3) the remainder is 19. Find the value of @ and the
value of b.

5. When 5x° + ax + b is divided by (x - 2), the remainder is equal to the
remainder abtained when the same expression is divided by (x + 2).

Algebra




a) Explain why b can take any value.
b) Find the value of a.

6. The polynomial 2x* + 3x? — x + 2 is denoted by p(x). Show that
the remainder when p(x) is divided by (x + 2) is 8 times the remainder

when p(x) is divided by (x - 1).

7. 'The polynomial x* + ax + b, where a and b are constants, is denoted
by p(x). When p(x) is divided by (x — 1) the remainder is 14 and
when p(x) is divided by (x — 4) the remainder is 56. Find the
values of a and b.

8. The polynomial x* + ax® + 2, where a is a constant, is denoted by p(x).
When p(x) is divided by (x + 1) the remainder is one more than when p(x)
is divided by (x + 2). Find the value of a.

9. When 6x? + x + 7 is divided by (x - a), the remainder is equal to the
remainder obtained when the same expression is divided by (x + 2a),
where a # 0. Find the value of a.

1.5 The factor theorem

We can deduce the factor theorem directly from the remainder theorem (section 1.4).

For any polynomial {(x), if f(a) = 0 then the remainder when f(x) is divided
by (x - a) is zero. Thus (x - a) is a factor of f(x).

For any polynomial f(x), if f(%) = 0, then (ax - b) is a factor of f(x).

Example 8
'The polynomial x* — ax® + 2x + 8, where a is a constant, is denoted by p(x).
It is given that (x - 2) is a factor of p(x).

a) Evaluate a.

b) When a has this value, factorise p(x) completely.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

a) p(2)=8-4a+4+8=0
4a=20=>a=5

b) We can factorise x* - 5x” + 2x + 8 using either (i) long division

or (ii) testing other factors using the factor theorem.

P> Continued on the next page
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i) XP-3x-4
x—2)x‘—5x2+2x+8 “——— Puta=>5.
x=2x2
-3 +2x+8
- 3x% + 6x

—4x+ 8

—4x + 8 e

You would expect there to be no
remainder since x — 2 is a factor.

and x> - 3x-4=(x-4)(x+ 1) “—— Factorise the quotient.
So p(x) = (x - 2)(x - 4)(x+ 1)

ii) f(+1)=1-5+2+8#0 (x— 1)isnotafactor “— Tryavalue of x.
f(-1)=-1-5-2+8=0 (x+1)isafactor
f(4)=64-80+8+8=0 (x—4)isafactor
S =(x-2)(x-4)(x+1
8 pte) =it -2z = Dle k) Note: Instead of performing this last trial we could

work out that the final factor is (x— 4) as we know
xxxxx=x%and (-2) x (+1) x (-4) =+8.

Example 9
Solve x* - 3x2 - 4x + 12 =0.

Let f(x) = x* — 3x% — 4x + 12.
- To solve, we must first factorise x* — 3x? — 4x + 12,
f(1)=1-3-4+12#0

50 (x - 1) is not a factor. <t—— Trial any value of x that is a factor of 12.
f(2)=8-12-8+12=0
50 (x — 2) is a factor. Alternatively, at this stage you could also do a long

o division to find the other two factors since you

fi=2)=-8~12+8+12=0 already know one factor.

so (x + 2) is a factor.
We can deduce that the third factor is (x - 3). ==—— 12 + 2 = -2 = -3 (and the coefficient of x? is 1).
f(3) =27 =37~ 12+ 12

so (x — 3) is a factor.

Thus (x - 2)(x +2)(x-3)=0

x=2 or x=-2 or x=3

Algebra
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Example 10

The polynomial ax® + x* + bx + 6, where a and b are constants, is denoted by p(x). It is given
that (2x — 1) is a factor of p(x) and that when p(x) is divided by (x — 1) the remainder is —4.
Find the values of a and b.

---------------------------------------------------------------------------------------------------------------

px)=ax®*+x>+bx+6

1] .
— |=0as (2x—1) is a factor.
P(l):£+l+é+6=0 | p(Z ( )
2 8
a+2+4b+48=0 “—————— Multiply each term by 8.
a+4b=-50 (1)
p(l)=a+1+b+6=-4 < p(1) = -4 as the remainder is —4.
a+b=-11 (2)
(1)- (2) =>3b=-39 «———— Solve the two equations simultaneously.
b=-13
(2)= a-13=-11
=2

a=2and b=-13

Exercise 1.5

1. Factorise the following as a product of three linear factors.
In each case, one of the factors has been given.

a) 2x°-5x*-4x+3 One factor is (x - 3).
b) X¥*-6x*+11x-6 One factor is (x - 2).
c) 5x°+ 14>+ 7x-2 One factor is (5x - 1).
d) 2x*+3x>—18x+8 One factor is (x + 4).
e) X+x*—-4x-4 One factor is (x + 2).

f) 6x°+13x*-4 One factor is (3x + 2).

2. Solve the following equations.

a) 2x*+7x2-7x-12=0 b) 2x° -5x*-14x+8=0
c) X¥-6x+3x+10=0 d X¥+3x>-6x-8=0
e) 2x°—15x*+13x+60=0 f) 35 -2x-7x-2=0

3. Show that (x - 3) is a factor of x° — 3x* + x> — 4x — 15.
4. Factorise x* + x* — 7x? — x + 6 as a product of four linear factors.

The factor theorem




5. (x-2)isafactor of x* — 3x* + ax — 10. Evaluate the coefficient a.

6. a) Show that (2x - 5) is a factor of 4x* — 20x% + 19x + 15.

b) Hence factorise 4x* — 20x* + 19x + 15 as a product of
three linear factors.

7. The polynomial ax® — 3x* — 5ax — 9 is denoted by p(x) where a is a real number.

It is given that (x — a) is a factor of p(x). Find the possible values of a.

8. 'The polynomial 3x’ + 2x* — bx + a, where a and b are constants, is denoted
by p(x). It is given that (x — 1) is a factor of p(x) and that when p(x) is
divided by (x + 1) the remainder is 10. Find the values of @ and b.

9. The polynomial ax’ + bx* — 5x + 3, where a and b are constants, is
denoted by p(x). It is given that (2x - 1) is a factor of p(x) and that
when p(x) is divided by (x — 1) the remainder is —3. Find the remainder
when p(x) is divided by (x + 3).

10. Factorise 2x* + 5x° — 5x — 2 as a product of four linear factors.

[Summary exercise 1 j
1. Solve algebraically the equation |5 — 2x|=7. 9. Divide 2x* - 9x° + 135> — 15x + 9 by (x — 3).
2. Solve algebraically the equation 10. Find the quotient and the remainder when
|3x — 4 |=|5—2x|. x* = 3x% + 6x + 1 is divided by (x - 2).
3. Sketch the following graphs: : EXAM-STYLE QUESTIONS
a) y=2x|+5 : 11. a) Show that (x — 4) is a factor of
b) y=2-lxl. E =32 = 10x + 24,

. . . b) Hence factorise x* — 3x* — 10x + 24.
4. Solve graphically the inequality

2x—2|<|xl. §12.Theexpressionx‘”+3x3+6x+khasa
) ) . remainder of —3 when divided by (x + 1).
5. Solve graphically the inequality Find the value of k.

|2 —1|<|3x — 4| :
: 13. The polynomial ax* + bx® — 8x* + 6 is denoted

N oW

.........
G m

#AM-STHLE QUESTION : by p(x). When p(x) is divided by (x* - 1)
Solve the inequality | x + 3| = 2| x — 3|, the remainder is 2x + 1. Find the value of a
: and the value of b.
Solve the inequality |x — 2| < 3|x + 1|. 3
. 14. The polynomial x* + ax® + bx? - 16x — 12 is
HAM-STHLE QUESTION : denoted by p(x).
Solve the inequality 2| x — a|>|2x + a| (x+ 1) and (x - 2) are factors of p(x).
where a is a constant and a > 0. a) Evaluate the coeflicients a and b.

b) Hence factorise p(x) fully.

Algebra | 5
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: 16.

£ 17

The polynomial x* + x* — 22x* — 16x + 96 is

denoted by p(x).

a) Find the quotient when p(x) is divided
by x>+ x - 6.

b) Hence solve the equation p(x) = 0.

'The polynomial 6x° — 23x* + ax + b is

denoted by p(x). When p(x) is divided by

(x + 1) the remainder is —21. When p(x) is

divided by (x — 3) the remainder is 11.

a) Find the value of a and the value of b.

b) Hence factorise p(x) fully.

A polynomial is defined by

p(x) = x* + Ax* + 49x - 36, where A is a

constant. (x — 9) is a factor of p(x).

a) Find the value of A.

b) i) Find all the roots of the equation
plx) =0.

ii) Find all the roots of the equation

p(x*) = 0.

Summary exercise 1

18

19. i

The polynomial x* — 15x> + Ax + B, where A
and B are constants, is denoted by p(x). (x — 16)
is a factor of p(x). When p(x) is divided by (x — 2)
the remainder is —56.
a) Find the value of A and the value of B.
b) i) Find all 3 roots of the equation p(x) = 0.
ii) Find the 4 real roots of the equation
p(x*) = 0.
i) Find the quotient and remainder when
x4 2x° + x2 + 20x — 25
is divided by (x* + 2x — 5).

ii) Itis given that, when
XF+28 +x2+px+q
is divided by (x*+ 2x — 5), there is no remainder.
Find the values of the constants p and g.

iii) When p and q have these values, show
that there are exactly two real values of
x satisfying the equation
F+20+xX+px+q=0
and state what these values are. Give your
answer in the form a + +/b.



The modulus function
The modulus of a real number is the magnitude of that number.
The modulus function f(x) = |x| is defined as
|x| = for x=0

|x| =—x for x<0

Sketchlng graphs of the modulus function

When sketching the graph of y = |f(x)| we reflect the section of the graph where y < 0 in the
x-axis.

When sketching the graph of y = f(| x|) we sketch the section of the graph where x > 0 and
then reflect this in the y-axis.

Division of polynomials
When dividing algebraic expressions, for example (4x° - 7x —3) + (2x + 1) = (25 — x - 3),
you need to know the following terms:
(4% — 7x — 3) is called the dividend.
(2x + 1) is called the divisor.

(2x* — x - 3) is called the quotient,
and there is no remainder.

(2x + 1) is a factor of (4x® - 7x - 3).

f(x) quotient x divisor + remainder

The remainder theorem
When a polynomial f(x) is divided by (x - a), the remainder is f(a).
When a polynomial f(x) is divided by (ax - b), the remainder is f(é)
2]

The factor theorem

For any polynomial f(x), if f(a) = 0 then the remainder when f(x) is divided
by (x - a) is zero. Thus (x - a) is a factor of f(x).

For any polynomial f(x), iff(z) = 0, then (ax - b) is a factor of f(x).

Algebra



Logarithms and exponential functions

The shell of a nautilus grows in a manner where
each new chamber is an approximate copy of
the last one, but is enlarged by a constant factor.
This gives rise to the aesthetically pleasing shape
known as a logarithmic spiral.

Many things in nature grow in the same way;
that is, its rate of growth is proportional to its
current size. Birth rates, for example, behave in
this way: as a population increases in size, its
birth rate increases proportionally.

As such, understanding the mathematics
which describes the behaviour of entities like
birth rates is crucially important if we are to
predict how they will behave in future. A lot of
important physical quantities, such as the energy released in an earthquake, have very large ranges
and thus logarithmic scales (the Richter scale, in the case of the earthquake) are helpful in providing
a way of making the numerical values of these measurements manageable.

Objectives
o Understand the relationship between logarithms and indices, and use the laws of logarithms
(excluding change of base).

e Understand the definition and properties of e* and In x, including their relationship as
inverse functions and their graphs.

o Use logarithms to solve equations of the form a* = b, and similar inequalities.

o Use logarithms to transform a given relationship to linear form, and hence determine
unknown constants by considering the gradient and/or intercept.

Before you start

You should know how to: - Skills check:
1. Apply the laws of indices. 1. Simplify
e.g. a) Simplify ()" a) x_: b) Jx© & )§
(FPr=at™o? : *
e.g. b) Simplify x° x x*.
xxt=xt=2
2. Know the properties of powers. 2. Simplify (29)".

e.g. If x # 0, state the value of x°.
xX'=1ifx#0




2.1 Continuous exponential growth and decay

In P1 you met geometric progressions of the form ar" -1, where n is an integer and r is the
common ratio between terms. Such a progression models exponential growth when r > 1 and
exponential decay when r < 1. When we model exponential change with a geometric progression
of this form, we assume that the change takes place in discrete steps. Situations involving
exponential growth or decay are not restricted to discrete steps, but often occur in continuous time.
We sometimes simplify a phenomenon, modelling it as changing in discrete steps to make the
mathematics easier. We might look at the change over a unit of time (an hour, a day, a year) and
treat it as though it were a discrete step process - for example, where an investment has the interest
added to the principal once a year. Shortening the units of time will give a better approximation to
reality. As we consider change over shorter and shorter time divisions, we can consider the limit of
that process as an exponential function f(f) = a X r!, where f can take any real value rather than just
integer values (in practice, f is mostly restricted to any non-negative value).

A function {(t) = a x r', where t is real,

gives exponential growth (r > 1) or decay (r < 1).

f(t)
61

1 2 3 4 5 6 7

—~y

() = 1.4 x 1.3t The initial value of
the function, a, is 1.4. We also see that
r =1.3 > 1, meaning this function
describes exponential growth.

f(t)
6
53

h

We have defined r ! only for rational
values of  so far, but any irrational
value of f can be approximated
above and below by a pair of rational
numbers which differ by as small

an amount as you wish — giving a
process to define f(f) for all £.

1 2 3 4 5 6 7 8

f(t) = 5 x 0.8 The initial value of
the function, a, is now 5 and
r = 0.8 <1, meaning this function
describes exponential decay.

Did you know?

Examples of exponential growth include the growth of cells, nuclear chain
reactions, epidemics, feedback in an amplification signal, and computer
processing power.

Examples of exponential decay include radioactive decay (used in carbon
dating), the rates of some chemical reactions (which depend on the
concentration of one or more of the reactants), and light intensity in an
absorbent medium.

One of the characteristics of exponential decay is that the graph will get
closer to the horizontal axis as time increases, but will never reach it.

Y

Exponential cell growth

Carbon dating relies on the fact that radioactive
material decays exponentially.

Logarithms and exponential functions




Example 1

The mass in grams of a decaying radioactive material is given by M(t) = 200(0.8)’ after t days.
Draw a graph of M and use your graph to estimate the number of days it takes for M to fall to

a) 100g b) 50g c) 25g.
M{g)l\

200

150

1004

50 +—————

1 -l || T I:
@ 2 2 & 8 10t

The same length of time
is taken for the amount
remaining to halve each

a) M(3.1) = 100 = after 3.1 days, M = 100 g

b) M(6.2) = 50 = after 6.2 days, M ~ 50 g time. The ‘half-life’ of this
radioactive material is

c) M(9.3) = 25 = after 9.3 days, M = 25¢g =2 approximately 3.1 days.

Example 2

The value V in dollars of a car which is £ years old is V{(t) = 35 000(0.75)".
a) Find its value after 2 years.

b) Show that the value goes below $15 000 before it is 3 years old.

---------------------------------------------------------------------------------------------------------------

a) V(2) = $35000(0.75)> = $19687.50 = $19700 (3 s.f.)

b) V(3) = $35000(0.75)° = $14765.63 < $15000 so the value goes below
$15 000 before the car is 3 years old.

Example 3

In a container, the number of cells doubles every six hours. At 10 am on Monday a new culture is

started with 20 cells and placed in a container which will hold 10 million cells. In which six-hour

period will the container be filled up?

During the 19th period (10 pm Friday - 4 am Saturday) On your calculator if you do 20 x 2 =

it goes from 5242880 to 10485760 cells. and then x 2 = repeatedly, you can
count the number of periods until it
goes over 10 million.




a) 0.6x(4)°  b) 400000 x (0.3)° ¢ 63.2x(1.03)* d) 5.1 x (0.08)"

Alr is escaping from a balloon. The volume V, in ml, of the balloon after f minutes
is given by V = 1500 x (0.7)". What is the volume after

a) 5 minutes b) a quarter of an hour?

Did you know?

A company has an accounting policy that equipment is depreciated ‘Depreciation is the loss

in value over a period
of time for equipment,
and 'book value' is the
value at any time in the
company accounts.

at 20% of current book value each financial year, and the initial
book value is set at the price paid for the equipment.

The company buys equipment for $3 million in 2012, and makes
a further purchase in 2013 for $2 million. What is the book value
of the equipment in 20157

The amount of a drug (in mg) in a patient’s bloodstream f hours after the first
injection is 100 x (0.8)". If injections are to be repeated at 12-hourly intervals,
what should the dose be (to the nearest mg) for the second and subsequent

injections to bring the total in the bloodstream back to 100 mg each time?

At 4 pm one afternoon, Jeremy’s car bottoms out when going over

a speed bump too quickly and oil starts leaking from an engine sump.
The volume, in ml, remaining after £ hours is 3000 x (0.98)". If the oil
level falls below 2 litres there is a risk of permanently damaging the
engine. The next morning at 9 am Jeremy notices the oil underneath
his parked car. Show that there is still enough oil for him to drive the
car to the garage for repair.

'The graph shows the function y = 2*in blue, and the inverse of this

y
function in green (recall that the inverse function is the mirror 104 L
, I ; JSy=x
image of the function in the line y = x). 8 P
This inverse function is known as the logarithmic functios Ly /,”
4 o7 .
The logarithmic function is the inverse of the exponential 2+ ,,‘:, BT
function to the same base. e e >
10 8 6 4 2.7/ 2 4 6 8 10
The green graph shown here is the logarithm to base 2, because # ol
the blue graph shows 2. // -
The exponential function has domain the set of all real numbers, - 3]
with range the positive real numbers, so it follows that the =]

logarithmic function is defined on a domain of the positive
real numbers and its range is the set of all real numbers.

Logarithms and exponential functions



Formally, we define the logarithmic function by

y=b" < x=log,y, wherexeR yeR y>0

These two special cases are worth remembering:
For any b, log, 1 =0.
For any n, log, b" = n.

Example 4

Find the value of

a) log 16 b) log 243 ¢) log 1000 d) log 343.

a) 16=2'= log2 16 =4 b) 243=3= log3 243 =5 We identify the
logarithm by
thinking of what

- 3 — — T3 —.

c) 1000 =10° = lo::rgm 1000 = 3 d 43=7"= log? 343 =3 power we have to
raise the base to.

Example 5

Find the value of

1
a) log, 5 b) log, 2 ) log% 4.
1
a) $=2"=log,c=-3 b) 2=48=(8=log,2=1

Example 6
a) Write these in the form y = b,

i) log 64=6 ii) log m=p
b) Write these in the form x = log, y.

i) 5°=0.008 i) °=R
a) i) 64=2° i) m=k
b) i) log 0.008 =-3 ii) log, R=5

The logarithmic function



Example 7
On the same axes sketch the graphs of
a) y=0.7¢ b) ¥y=12* ¢ y=15

sssssssssssssssssssssssansnssssnsssnnans ssasass sessse sassssssssnasnsne ssssss ssssses sssssssssasssnsnEnnnn ssssseef

y=0:r

In part (a) the base value (0.7) is less than one so the function
9 L decreases as x gets larger. In parts (b) and (c) the base values
are larger than 1 (1.2, 1.5) and so these functions increase

as x gets larger.

Note also that (c) is steeper than (b) because (c) has a greater
base value.

T T T T T T T

1 0 T
e e Eenl o =l 18 23 Sy

Since the logarithm function is the inverse of the exponential (or power) function,
the rules of indices give rise to corresponding properties of logarithms.

log(xy) =log x + log y

log[i]— logx —logy
%

log(x") = nlog x

These results are true for
logarithms in any base.

Example 8
Express these as a single logarithm or number.
a) log 4 +log 7 b) log 4 +log, 9
a) log 4 +log 7 =log, 28 b) log 4 +log 9 =log, 36 = log, (67) =2
Example 9
Express these in terms of log x, log y, and log z.
a) logxy b) log[%} c) log [%J
2
a) logxy=Ilogx+logy b) log[%)m logx +2logy —logz
oy ) 2 ,)_3 Identify the power of
£) leg [?) B log[xzyz J— 3 g+ lop =2 logz each variable first.

Logarithms and exponential functions




Example 10

It is given that log 3 = x,log 5=y, and log 10 = z.
Express the following in terms of x, 3, and z.

a) log 50 b) log 75 c) log 0.75

---------------------------------------------------------------------------------------------------------------

a) log 50=1log (5x10)=y+z b) log 75 =1log (3x5x5)=x+2y

Express the number whose log is required only in
10x10 j =x+2y-2z terms of numbers whose log you already know —
using multiply and divide only (or powers).

Exercise 2.2
1. Evaluate the following logarithms.

a) loga(éj b) log 27 c) log 128 d) log, 6561
e) log 216 f) logsé g) log 32 h) log4[%j
i) log, [%) j) log, (éj k) log, 27 1) log, 8

2 3 4

2. Write in the form y = b*.
1
a) log,256=38 b) log, [E] =-3 c) log 32=25

d) loga(Q\E) =25 e) log x=¢q f) log t=u

3. Write in the form x = log, y.

a) 7%= % b) 10°= 1000000000 g 24= %
d) 52°=255 e i=v f) pr=m
4. Evaluate, without using a calculator, the following logarithms.
a) log 100 b) log, J10 c) log, 31100 d) log, [ﬁj

e) log,(100000y10)  f) logm(;} g) log, 1
10010

5. On the same axes, sketch the graphs of
a) y=05* b) y=13" c y=1%

The logarithmic function




6. Express the following as a single logarithm or number.

a) log 3 +log_ 8 b) log 7 +log 10 c) log 4+log, 6.25
d) 2log, 3 +log 4 e) 2log 6-log 8 +log 12 f) 2log 4-4log 2
g) 2logP 4- 4logp 2 h) log 12 - élog10 9 +log 25

7. Express as a single logarithm.
a) log. 3+2 b) 3+log, 10 ¢) 2log x-log 8+log (x+3)
d) 3+2log x e) log x+3 f) 2+log, 8-log x

8. Express in terms of log x, log y, and log z.
a) log[x}:] b) log(x2 (xyzz)B) c) log [x f ]
z’ z

9. Given thatlog 2 =x,log 5=y, andlog 6 = z, express the following

in terms of x, y, and z.
a) log 50 b) log 75 c) log 0.75 d) log 0.001

2.3 e*and logarithms to base e

You have seen that you can use any positive real number as a base for
a power or logarithmic function, but in practice two bases are very
commonly used, and they are available on your calculator.

o The button marked uses base 10 since our number system is

based on powers of 10.

o The button uses base e (= 2.71828 ...). These are sometimes
called natural logarithms because of some special properties the

number represented by ‘e’ has when used in an exponential function.

y i
10+ A .
8 o S y=x
6
24 =
29/, catlll & i The blue graph is y = e* and the green graph is y = log x
e (also known as y = In x). These are inverses and are
-10 -8 6 -4 -2, _/ 2 4 6 8 107 similar to the graphs you saw earlier at the beginning of
,’/ section 2.2. One feature to notice about y = e* is that as
57 “H x increases, not only does e* also increase, but its rate of
st =6 increase (the gradient of the graph) gets larger.
/” -8
/I -104

In x or log x is the inverse function of e*.

Logarithms and exponential functions




Did you know?

Consider the following results, which you encountered in section 2.2.

log (xy) =logx+logy (1)
log[i] =logx —logy (2)

log (x") = nlog x (3)

Before hand-held electronic calculators became commonly available in the 1980s, scientists and

students used these results to simplify numerical calculations. Using them, we are able to transform

a calculation and so merely add instead of multiply (using (1)), subtract instead of divide

(using (2)), and multiply instead of raising something to a power (using (3)).

Using base 10 made those new operations very simple, since (for example)

257.2=2572 x 100 = loglo 257.2 = log10 2.572 + log10 100

=log  2.572 +2

= 2.4102...

When they did not have calculators, scientists
and students used books of logarithm values.
However, as they were able to transform the
logarithm of a big number into the logarithm
of a small one, as shown above, the tables
only needed to show the logarithms of
numbers x satisfying 1 < x < 10.

LT T R

earthquake, e.g. Mexico 2017

Photo of devastation to buildings/roads caused by a recent high-magnitude

Check on your calculator that
log,, 257.2 = 2 + log,,2.572

An earthquake under 3 on the Richter scale will go
unnoticed by most people going about their normal
business, but 3 will be noticed and 4 will cause anxiety
amongst those unfamiliar with the feeling of earthquakes.
Once it gets up to 5, buildings may be damaged, and 6 is
likely to cause injuries, so the effects increase enormously
for small increases in the reported measurement.

When logarithmic scales are used
with natural phenomena, it is
because the range of measurement

is so large that the numbers are

not easily comprehensible, but it is
then very important to remember
that the scale is logarithmic when
making comparisons. An earthquake
which measures 4.0 on the Richter
scale creates waves recorded on a
seismograph which have ten times the
amplitude of the waves an earthquake

measuring 3.0 creates, and releases
around 31.7 times as much energy.

Other commonly used logarithmic scales include the
pH scale for measuring acidity, noise levels measured
in decibels and the stellar magnitude scale for the
brightness of stars.



An earthquake of magnitude 3.0 on
the Richter scale releases the energy
equivalent of 480kg of TN'T.

How much energy will be

released by an earthquake of

the following magnitudes?

a) approximately 1 tonne of TNT

b) approximately 15 tonnes of TNT

tonnes (2.7 megatonnes) of TNT

Example 11

Use your calculator to find the values of

a) log 16 b) log 0.01457 c¢) Inl10

d) In2 e) Inl f) In0.8

Give your answers to 3 decimal places.

a) 1.204 b) -1.837 <) 2.303

d) 0.693 e) 0 f) —0.223

Example 12

Find the values of

a) log,, 7 b) log,,3.52 <) In8.2
log,, 4 log,, 7.94 In6.5

Give your answers to 3 decimal places.

a) 1.404 b) 0.607 ) 1.124

Example 13

An increase of 0.2 on the Richter
scale roughly doubles the amount of
energy released by an earthquake.
An increase of 1.0 gives a multiplying
factor of 31.7 (very close to 2°).

----------------------------------------------------------------------------------

0.48 x 31.7°2 = 0.958

0.48 x31.7=15.2

¢) approximately 0.48 x (31.7)** = 2.7 million

Remember:
e 1 has logarithm 0 in
any base

e numbers below 1
will have a negative
logarithm

e anything between 1
and the base will have
a positive logarithm
less than 1.

Often when you solve
logarithmic equations
your solution will be in a
form involving a quotient.
Make sure you can
enter these correctly in
your calculator — often
you need to remember
1o insert parentheses
separately around both
the numerator and the
denominator.

Logarithms and exponential functions



Example 14

A radioactive isotope has a half-life of 20 days. Initially it has a mass
of 60 grams. How much will there be after

a) 20 days b) 30 days?

.............................................................................

a) 30grams
b) 21.2 grams (= 60 x (0.5)°) since 30 days = 1.5 half-lives

.....

Did you know?

The 'hali-life’ is the
length of time it will
take for half the mass
to decay.

1. Use your calculator to find the value of these. Give your answers to 3 decimal places.

a) log 23.2 b) log, 0.0232
¢) log, 2.7183 (whichise) d) Iné6.5
e) In 0.0065
2. Find the value of these. Give your answers to 3 decimal places.
log,, 70 b) log,, 352 <) In0.82
log,, 40 log,, 794 In0.65

3. An earthquake of magnitude 3.0 on the Richter scale
releases the energy equivalent of 480kg of TNT.

a) How much energy will be released by an earthquake
of magnitude

i 2 ii) 62
b) How much energy will be released by six earthquakes of

magnitude 52

4. The radioactive isotope carbon-14 has a half-life of 5730 years.

Compare your answers to those
in Example 12. Make sure you
never think of cancelling in an
expression like this.

Remember from Example 13
that an increase of 1.0 gives a
multiplying factor of 31.7.

Once a living organism dies, the decay process starts and can be used

to date how old a fossil is.

An archeologist finds a skull which he thinks is from an animal which

became extinct 4000 years ago. For the size of the skull, he knows it

would have had a mass of 28 mg of carbon- 14 when the creature died.

If the skull is 4000 years old, how much carbon-14 should be in the

skull now?



2.4 Equations and inequalities using logarithms

You can use the laws of logarithms to transform equations in order to
make their solutions accessible.

Example 15
Solve the equatlon 4‘ =16 by takmg logarlthrns of both 51des

4 =16 =>xlog4=log16:>x=lfglf
0]

= 2 (using any base)

Example 16

Solve the equation 5* = 32+,

5*+=3%" = xlog5=(2x+1) log3 = x(logS 2 log 3) = log 3
log3
log5—2log3

Since x appears in more than
=—1.869 one power, you need to collect x
terms together to solve for x.

=Xx=

One important feature of the power (and logarithmic) functions is that
they are strictly monotonic - that is to say, they are always increasing
(if the base is > 1) or always decreasing (if the base is < 1). So if the
logarithms are equal it follows that the expressions are equal. Examples
17 and 21 express both sides as a single logarithm and use this feature to

remove the logarithm to enable the equation to be solved.

Example 17
Solve the equation log, (2 + x) = 2 + log, x.

log (2+x)=2+log x=log (2+x)= logmlOO +log  x T —
2 |

= log,, (2 + x) = log,,100x = 2 + x =100x = x = - hand side as a single logarithm.

Another important consequence of the strictly monotonic property is
that inequalities can be solved by considering the case of equality and

then selecting the values above or below that critical value as appropriate.

Logarithms and exponential functions




Example 18

Solve the following inequalities.

a) 5*<13.3 b) (0.4)* <0.0001

a) 5*=13.3 = xlog5=1logl3.3 = x= logl3.3 =1.608 Powers of 5 give a monotonically

log increasing function, since 5 > 1.

s0 5* < 13.3 when x < 1.608

b) (0.4)*=0.0001 = x log 0.4 = log 0.0001 Powers of 0.4 give a

log0.0001 _ monotonically decreasing
= “log0d =10.1 - ————— function, since 0.4 < 1, so the
direction of the inequality must

so (0.4)* < 0.0001 when x > 10.1 B AR

Example 19

How many terms of the geometric series 2 + 2 x (1.1) + 2 x (1.1)2 + 2 x (1.1)* + ... must be taken
for the sum to exceed one thousand?

---------------------------------------------------------------------------------------------------------------

If you solve for the sum of # terms of this GP to be 1000 it will (almost certainly) give a
non-integer value. The solution will be the next integer above that value.

1000=211"D 5o 171 = 117 =51 5
1.1-1 e ) Remember S, = L‘I) is the
; ; _ log51 — e

Then taking logs gives n = R 41.25... sum of n terms of a GP with first

term a and common ratio r.
So 42 terms are needed.

Example 20

Solve the equation log (2 - x) - 2log x =log 3.

log, (2 — x) — 2log, x =log, 3 = log, Q;le =log,3 Having equated the

@2—x) X expressions which were

> —=322-x=3"=3+x-2=0 logarithms you need to
* .~ check the ‘solutions’

This is now a standard quadratic equation, with solutions x = %, = actually gave a valid

equation in log form.
However, only x = % is valid because the logarithm of a negative number ] :
is undefined.




Example 21
Solve the equation log , (2 - x) - 2log  x =1.

ICng(2 Sal=2 logw x=1= log10 @ = log10 10 You need to express both
* sides as a single logarithm in
= order to use this technique,
i sowriting 1 as log, 10 isa

This is now a standard quadratic equation, with solutions x = %, - critical step.

= =10=>2-x=10x"=102+x-2=0

2-x)

b | —

but only x = % is valid.

Example 22 Did you know?
A culture contains 300000 bacteria at 9 am on Monday and increases at The time for a bacteria
a rate of 20% every hour. At what time will there be POD.Ulat.Ion to double
a) 600000 bacteria b) 2 million bacteria? N SIZE 1S knf:wn as the
.................................................................................. generation time and
. L typically varies from 10
The number of bacteria f hours after 9 am on Monday is given by e

300000 x (1.2)".
a) 300000 x (1.2)'=600000 = (1.2)'=2= tlog 1.2 = log 2
= t=23.8017 ... so at 12:48 pm.

hours, though bacteria
deep below the earth’s
surface may have a

generation time of

b) 300000 x (1.2)" =2000000 = (1.2) = 23—0 = tlogl.2 = log[§] several thousand years.

= {=10.405 ... so at 7:24 pm.

For this exercise, give your answers to 3 significant figures (unless they are exact).

1. Solve for x.

a) 5°=100 b) 6°=3 ¢) 04°=0.1
d) 04:=25 e) 7%=12 f) 7%=64
g) 4'=7 h) 72 =10 i) 2%1=128
j =L K 3 =27 1) (ITH=128
27 2
2. Solve for x.
a) 2% =32 b) 5% = 4% ¢) 3xl=7s

d) 43.\'—1 — 22.1'—6

e) 3.x'+4 o 5x+1

f) T 4 = a5

Logarithms and exponential functions



10.

11.

12.

13.

14.

15.

Solve for x.

a) 3*>40 b) 6°<0.8 Q) 0.4<<02
L\
d) 04<2 e) 7*<5 £f) 73" <25
Solve for x, v, and z. Since 5 x 12 = 60 you
a) 75=5 b) 77=12 ¢) 7°=60 should findthat x + v=z.
Solve for x and y. Since question 5 shows
a) 5=30 b) 5% =60 us that x = y, we conclude
that, in general,
. . Bt Do b
How many terms of the geometric series 1 + 3 + 9 + 27 + 81 + ... must
be taken for the sum to exceed one million?
How many terms of the geometric series 1 + 3 + 9 + 27 + 81 + ... must
be taken for the sum to exceed one billion? (1 billion = 1000 million)
How many terms of the geometric series 1 + 5 + 25 + 125 + 625 + ...
must be taken for the sum to exceed one million?
How many terms of the geometric series 3+ 6 + 12 + 24 + 48 + ... must
be taken for the sum to exceed ten thousand?
How many terms of the geometric series 10 + 5 + 2.5 + 1.25 + 0.625 + ...
must be taken for the sum to exceed 19.9997
How many terms of the geometric series 8 + 4 + 2 + 1 + 0.5 + ... must
be taken for the sum to get within 107 of its sum to infinity?
How many terms of the geometric series 1 + % + % + 2—17 + é + ... must
be taken for the sum to get to within 0.01% of its sum to infinity?
Solve for x.
a) log (2 -x)=log x+log 5 b) log (4+x)=log x+log 7
c) In(8x-1)=Inx+1né6 d) log (4+x)=log x+2
e) In(1-x)=Inx+ 1 (Give your answer in exact form, i.e. in terms of e.)
Solve for x.
a) In(6-13x)=2lnx+1n5 b) log (13x-6)=2log x+log 6
c¢) In(17x-6)=lnx+1n12 d) log (13x-4)=2log x+1

There were 80 mg of a radioactive material stored at the start of 1950.
The material has a half-life of 12 years.

a) How much radioactive material will there be at the start of 20502
b) When will there be 1 mg left?



16. An accident occurs while transporting radioactive waste, and results in the
area being contaminated by material with a half-life of 8 years. Experts say
that the area should be quarantined until the radioactive material has
reduced to 10% of its original level. How long are the experts
recommending the quarantine should be in place for?

17. A colony of bacteria has a generation time (the time in which the population doubles)
of 30 minutes under ideal conditions. Sunil conducts an experiment in which
he grows one culture of the bacteria under ideal conditions and another
under conditions he thinks will produce a generation time of 40 minutes.
If he starts with equal sizes of culture in both cases, after how long would
he expect one to be three times the size of the other?

Many scientific, economic, and social science quantities can be described (at least
approximately) by relationships which follow either an exponential growth or
decay law;, or else a power law. If we take logarithms of an equation which

follows either of these two laws, we transform it into a linear expression.

This allows values of unknown constants to be estimated from observational data.

Exponential growth or decay:

y=ab'=logy=loga+ tlogh

You know some examples
of power laws in

Power law: geometrical formulae for
areas and volumes.

The graph of ‘log ¥’ against ‘t" has intercept ‘loga’ and gradient ‘logb.

y=ax"=logy=loga+ nlogx
The graph is of logy’ against logx’ and has intercept ‘loga’ and gradient n.

Example 23
By taking logarithms, transform these relationships between the two stated variables into
a linear relationship between two new variables, and state the new variables.

a) yand fare related by y = 7b".
b) yand x are related by y = ax’.

---------------------------------------------------------------------------------------------------------------

a) logy=log7 + tlogb is linear with variables ‘logy’ and ‘t’.

b) logy=loga+ 3 logx is linear with variables logy’ and ‘logx’

Logarithms and exponential functions



Example 24

For the following linear equations involving logarithms, find the relationship between the
unknown variables, giving your answer in a form not involving logarithms.

a) log y=2+3log x b) log A=log m+2log r c) log y=03+07x

S R R T T R R RN R PR R R WY

a) log y=2+3log x=>log y=log 100+log x’=log 100x°

= y =100 x*
b) log A=log, m+2log r=log mr=A=nr This step, using one of the laws
<) logmy - 0.3+ 07x= logm (10°%) + logm (10°7%) of mdlces: is thz? vlltal one in
= S transforming this into a power
= log,, (10°) + log,, ((10°7)") law relationship between y and x.

=log, , (10°* x (10°7))
= y=1995 x5.012"

Example 25

The metabolic rate of mammals (M) and their body mass (B) are thought to obey a power law in
the form M = aB*. Data on four species of mammals are given in the table. Plot a graph of log M
against log B and use it to estimate the values of a and k.

B 1.6 8 700 | 9000
M 1.9 6.4 | 143 | 1100

M =aB*= logM =loga + klogB Taking logarithms of the equation shows that
log B 0204 | 0903 |2.845 | 3.954 the gradient is k and the intercept is log a.

logM | 0.279 | 0.806 [ 2.155 | 3.041

3.5 =

log M=0.72 log B + 0.13

3.0 1
25 7
2.0 7

155

1.0 .
0.5 - . g .
// g Plotting the points on the graph and drawing

0.0 T ‘ . T | a line of best fit by eye gives k = 0.72 and
0.000  1.000  2.000  3.000 4000  5.000 a=10%=13,

Log metabolic rate

Log body mass




Example 26

'The variables x and y satisfy the relation 57 = 3**'. By taking logarithms, show
that the graph of y against x is a straight line, and find the exact values of the
gradient and the intercept.

5 =3 = ylog5=(2x+1)log3
= 2log3 it log3
log5 log5
'This equation describes a straight line with gradient

2log3 log3
8- and intercept B
log5 log5

Exercise 2.5
1. By taking logarithms, transform these relationships between the two

stated variables into a linear relationship between two new variables,
and state the new variables.

a) pand tare related by p = 3b".
b) yand x are related by y = Kx .
¢) yand xare related by y = avx.
2. Tor the following linear equations involving logarithms find the

relationship between the unknown variables in a form which does
not involve logarithms.

a) log y=1+2log x
b) longzlogm(%]-# 3log, r

c) log, y=0.1+13x

3. Two variable quantities are related by the 33
equation y = Ax" where A and n are constants. 3.0 ¢
'The graph shows the results of plotting - #
log,, v against log x for four pairs of values
of x and y. Use the diagram to estimate the - >0 *
values of A and n. 15 e
1.0
05
0.0 T T T T 1
0.0 1.0 2.0 3.0 4.0 5.0

log x
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Two variable quantities are related by the equation 3.5 1
p = Ak~ where A and k are constants. The graph 3.0
shows the results of plotting In p against g for four 25
pairs of values of p and g. Use the diagram to estimate np 20
the values of A and k. 15
1.0
0.5
0.0 —_—
00 05 10 15 20 25 30

Two variable quantities are related by the equation y = Ax”"
where A and n are constants. The table shows four pairs of
values of x and y. Estimate the values of A and n.

X 62 150 400 921
¥y 352 232 141 88.1

The resistance R (in newtons) to the motion of a train is measured
at a number of speeds v (in ms™) and is shown in the table. If the
resistance follows the relationship R = kv", find the values of k and n.

v 25.7 45.3 71 102.3
3562 4635 | 6037 | 7324

'The distance D (in millions of km) from the Sun of the first four planets
in the solar system and the time T (in days) for each planet to orbit the
Sun are given in the table. If the orbit time follows the relationship

T = kD", find the values of k and n.

Mercury | Venus | Earth | Mars
D 58 108 150 228
T 88 225 365 687

The population P of a colony of bacteria is thought to obey an exponential
growth law in the form P = krf where P is thousands of bacteria and £ is
hours since the experiment started. Plot an appropriate graph and use it
to estimate the values of k and .

f 2 5 8 12
P 919 2049 | 4475 | 12817

The variables x and y satisfy the relation 7 = 4**%, By taking logarithms
show that the graph of y against x is a straight line, and find the exact
values of the gradient and the intercept.

3.5



Find the values of

a) log{%]

Write these in the form y = b*.
1
a) ]og4 256=4 b) logg[ij =—5

<) log2(32\/5) =55

b) log 8 ) log, 3.

Write these in the form x =log, y.
a) 67=——

b) 107 = 10000000
216

Find the values of

a) log 10000
100

<) loglo % .

Express as a single logarithm or number.

b) log,, V1000

a) log,2+log, 7

b) log 17 +log 12

¢) In3+1n45

d) 2log, 3 +log 4

e) log 24-log 3+log 12.5
f) 2+3log x

g) 3In(2x) -In8 +In(2x + 3)
h) 2+In4 -2Ilnx

2 5
Express 10g[(1}’75)J in terms of logx, log y,
X
and logz.

Givenlog 2 =x,log 5=y,andlog 6=z,
express log 0.15 in terms of x, y, and z.

Solve

a) 7°=83 b) 5 =03

c) 02:=0.8.

Solve

a) 42+ = gx+2 b) 32+l — Gix-l

C) 72.:—1 e 3x+1'

10.

11.

12.

13.

14,

15.

Solve

a) 5°>43.2 b) 5<07

) 0.75<0.3.

How many terms of the geometric series

2+ 10+ 50 + 250 + 1250 + ... must be taken
for the sum to exceed one million?

How many terms of the geometric series
5+2.5+ 1.25+0.625 + ... must be taken
for the sum to get within 10-° of its sum to
infinity?

Solve

a) log (3 -2x) =log x+log 7

b) log (3 +x)=log x+2

c¢) In(bx-2)=lnx+1n4

d) In(3 - 2x) =Inx + 2 (leave your answer
in terms of e).

There were 150mg of a radioactive material
stored at the start of the year 2000. The
material has a half-life of 15 years.

a) How much radioactive material will
there be at the start of 20407

b) When will there be 1 mg of radioactive
material left?

A type of bacteria has a generation time
(the time in which the population doubles)
of 30 minutes. Henry conducts an
experiment in which he grows a culture

of the bacteria starting with a colony of

10 000 bacteria, in a container which will
hold 10 million bacteria. When will the
container be filled?

Logarithms and exponential functions



- 16.

t 17,

. 18.

L 19.

Warren is an investor. He puts $A into a
fund. Its value, $V, T years later is expected
to follow the equation V' = Ar’. The value of
the fund on four occasions is given in the
table. Find estimates of A and r and hence
estimate the average annual return Warren
gets on his investment in the fund.

T 2 4 6 9
\% 3572 | 4000 | 4440 | 5106

The population P of a colony of bacteria is
thought to obey an exponential growth law
in the form P = kr' where P is thousands of
bacteria and ¢ is the number of hours since
the experiment started. Plot an appropriate
graph and use it to estimate the values of

kandr.

3 1.2
P 12.3

2.5
17.2

4.2
26.9

6.2
45.9

The variables x and y satisfy the relation

5 = 6*°. By taking logarithms show that
the graph of y against x is a straight line, and
find the exact values of the gradient and the
intercept.

Two variable quantities are related by

the equation y = Ak* where A and k are
constants. The graph shows the results of
plotting In y against x for four pairs of values
of x and y. Use the diagram to estimate the
values of A and k.

251

2.0

1.5 4

In
Y10

0.5 4

0.0 T T T T T 1
0 1 2 3 4 5 6

20. Use logarithms to solve the equation
3**? = 11"~ giving the answer correct to
3 significant figures.

21. Use logarithms to solve the equation
e> =53 giving your answer correct to 3

decimal places.

22. Use logarithms to solve the equation
ex =i 5,\ +3

giving the answer correct to 3 significant
figures.



Exponential growth/decay and logarithmic functions

A function f(f) = a x ', where t is real, describes exponential growth
when 7 > 1, and describes exponential decay when r < 1.

y=b*<x=log, y,wherexe R,ye R, y>0.

The logarithmic function is the inverse of the exponential function to the same base.

Properties of logarithms
log (xy) =logx +logy

log (1] =logx —log y
2
log (x")=nlogx

Special bases

In practice, two bases are very commonly used for logarithms and both are
available on your calculator.
The button marked uses base 10 since our number system is

based on powers of 10.

The @button uses base e (= 2.71828 ...). These are sometimes called natural
logarithms because of some special properties the number represented
by ‘e’ has when used in an exponential function.

Equations and inequalities using logarithms

You can use the laws of logarithms to transform equations to make
their solutions accessible.

Power (and logarithmic) functions are strictly monotonic, so if the logarithms are
equal it follows that the expressions are equal. This also allows inequalities to be solved
by solving for the critical value at which equality holds.

Using logarithms to reduce equations to linear form
Exponential growth/decay: y = ab* = log y = log a + t log b. The graph
of log y” against ‘f has intercept ‘log a” and gradient ‘log b.
Power law: y = ax” = log y = log a + n log x. 'The graph of ‘log y’
against ‘log x” has intercept ‘log a’ and gradient .

Logarithms and exponential functions



Trigonometry plays a major role in musical
theory and production. A musical note can

be represented by a sine curve, and a chord

can be represented by multiple sine curves.

A graphical representation of music allows
computers to create and understand sounds. It
also allows sound engineers to visualise sound
waves so that they can adjust volume, pitch
and other elements to create the desired sound.
Trigonometry also plays an important role in
speaker placement, since the angles of sound
waves hitting our ears can influence the quality
of the sound.

Understand the relationship of the secant, cosecant, and cotangent functions
to cosine, sine, and tangent, and use properties and graphs of all six
trigonometric functions for angles of any magnitude.
Use trigonometric identities for the simplification and exact evaluation of
expressions in the course of solving equations, and select an identity
or identities appropriate to the context, showing familiarity in particular with
the use of

sec’@=1 + tan’ B and cosec’0=1 + cot’ @

the expansions of sin(A + B), cos(A + B), and tan(A * B)
the formulae for sin 24, cos2A, and tan 2A

the expressions of asin 0 + b cos 0 in the forms R sin(0 + ) and R cos(0 + ).

1. Use exact trigonometric ratios, 1. State the exact values of
i o o
e.g.sin30° = % cos45° = L [z -‘ié] a) sin0 b) cos30
2 < 2
B ¢) tanl150° d) sin %
7 2
tan60°=\/§ sin% = s (= —;—] 5 .
2 < €) cos - f) tan T?T
cosZ=1 tan 3% = -1
3 2 4



2. Use inverse trigonometric functions, 2. a) State the principal value, in radians, of
e.g. write down the principal values of i) sin? [lj ii) tan!(-1).
2.
- [L} cos! 0 and sin! [_ﬁ} b) State the principal value, in degrees, to
NE) 2 1 decimal place, of
Y (=30°) i) cos™(0.85) ii) sin' (-0.2).
J3) 6
10=Z (=90°
cos 3 ( )
sin! [——\/—5] =-Z (= -60°)
2 3
3. Solve trigonometric equations using the 3. Solve
identities tan 0 = smg and sin® @+ cos*8 = 1. a) 4sin 0= 2cosBfor 0° < 6 < 360°
cos b) 2(sin*0-cos’0)=1for0< 0<2m.

e.g. Solve /2 sinx — cosx =0
for 0 < x < 360°.

\E sinx = cosx

tanx = L
5

x:=35.3%,215.3"

3.1 Secant, cosecant, and cotangent

We are familiar with the trigonometric functions sine, cosine, and tangent.

Tn P1, we studied these functions together with their graphs, their inverse

sin @

functions, and the trigonometric identities tan 8= 9 and sin? 0 + cos*0=1.
Cos

We also studied how to use these identities to solve trigonometric equations.

We now introduce three other trigonometric functions: secant, cosecant and
cotangent. These functions, usually abbreviated to sec, cosec, and cot, are
closely related to sin, cos, and tan. They are defined as follows:

cos B sin @ tan & sin

1 1 0
secf = cosec O = cot@ = 1 —[COS]

These functions are the reciprocals of cos 8, sin 8, and tan 8. Remember, for example,
that cosec 8 = ﬁ. Be careful not to confuse these functions with the inverse functions

sin™' B, cos™' @, and tan™' 6.

Trigonometry




In order to sketch the graphs of sec 8, cosec 8, and cot 8 we can consider
the reciprocals of the functions cos 8, sin 6, and tan 6.

For example, to sketch the graph of y = sec 8, we consider the graph of y = cos 6.

Asy = cos 0 is zero at x = 90°, 270°, 450°, ..., we know that sec 8 will not be
defined at each of these points, and instead there will be vertical asymptotes

on the graph of y = sec O at these points.

. . 1
The graph can then be sketched by considering the value of —~— at

different points.

We see that, just as the graph of y = cos 8 is periodic with period 360°, so
is the graph of y = sec6.

y=CcostA

NvANA

T T T T T T :
360° -27g° -180° -go° © 180°  270° 360° 450° 540° 630°  720° g
-1 4
y=sect A
L] ] ] 1 1 1
[ 1 ] 1 1 1
1 1 1 1 1 1
] 1 ] 1 1 1
] 1 1 1 ] 1
] ] 1 1 1 1
1 1 1 1 1 1
[} 1 1 1 1 1
] 1 1 1 1 1
] 1 ] 1 1 1
1 1 1 1 1 1
[} 1 1 1 1 1
] 1 1 1 1 1
1 1 1 1 1 1
-360° -2f0° -180° -9p° 9 op°  180° 27p° 360° 450° 540° 63p°  720° f#
: E S : : :
I ] 1 1 1 1 2 =
' ' ' ' 1 ' It is wise to mark
1 1 1 I 1 [ .
1 ' ' ' 1 1 in the asymptotes
L ] 1 1 1 1
' ' ' ' 1 1 before you sketch
1 1 1 1 1 1
' ' ' ' 1 1 the rest of the graph.
L 1 1 1 1 1

A Secant, cosecant, and cotangent
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Example 1

Without using a calculator, write down the values of

a) sec(° b) sec 60° c) cosec 120° d) cot270° e) cosec[—%} f) cot [%J
o 1
a) sec(°= ==l & Usecos0°=1.
cos 0
b) sec60°= —L =2 <—— Usecos60° =,
cos 60° 2

o 1 2 243 ; /3 ;
240° = =—-—= - - o_ _
€) cosec oin 240° VA [01’ 3 ] Use sin 240° = = and take the reciprocal.
1 cos270° 0 o b g
d t 270° = = =— =0 < Note that tan 270° is infinitely large so
) 2 tan 270° sin 270° -1 co.t 2700 — 0

e) cosec[—%]:(;%)=_%(0fﬂﬁ) — Sin[—%]=—5iﬂ(£]=—£

cos @

5x

cos (—) : Sr

f) Cet[_sﬂ'] - 51 = [M \E] = [_\5] =1 You can use the reciprocal of tan [TJ or
sin (_4_) use cot@ = =0

We can use the definitions of sec 6, cosec 6, and cot 6 to help us solve some
simple trigonometric equations.

Example 2
Solve for 0° < 8 < 360°.
a) secB=2 b) cot’6=3 c) 11+ 3cosec20=1
1 . 1
a) secO= = a 2 <@~ Replace sec 8 with =
cos 0= % <———— Rearrange to obtain the value of cos 6.
6=60° 300° <} Solve the equation for 0° < 6 < 360°,

> Continued on the next page
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b) cot@=++3

tan@:i%[or +§]

6 =30%,210°

or 8 =150° 330°
0 =30°, 150°, 210°, 330°

c) 3cosec28=-10

cosec26 = =1y
3
sin28=-0.3

20 =180° + 17.45°, 360° — 17.45°,
540° + 17.45°, 720° — 17.45°

6=98.8%171.3° 278.8°, 351.3°

Write down the two values, ++/3.

Use cot@ = 1 to write down the values of tan 6.
tané

Solve each of the equations tan 8 = % and
1
tan 6= ——.
N

Rearrange to obtain the value of cosec26.
Use cosec 20 = L find the value of sin26.
sin26

Find all values of 28 in the range 0° to 720°.

Give each solution for @ correct to 1 decimal
place.

We can also sketch the graphs of composite functions involving sec 6, cosec 6,
and cot 8 in the same way that we sketched the graphs of composite functions
involving sin 0, cos 6, and tan O in P1. You can practise this by answering

questions 13 and 14 in Exercise 3.1.

Exercise 3.1

1. Find the exact values of

a) sec30° b) cosec30°
e) sec210° f) cosec135°
2. Find the exact values of
a) secT b) secX
4 3
e) cosec an f) cosec 2
3 2
3.
a) cosec90°® b) cosec130°
3n n
e) sec o f) cot p

c) cot 60° d) sec45°®
g) cot 300° h) sec150°.
c) cotZ d) cosecXt
6 2
51 7T
= h t £L,
g) sec p ) co )

State whether each of the following values are defined or undefined.

c) secl80° d) cot(-180°)

g) cosec(-m) h) cot 2%

2
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4. Use your calculator to find these values correct to 3 significant figures.
a) cot 32° b) cosec 70° c) sec2l15° d) sec(-22°)

e) cosec% f) cot% g) sec(0.6m) h) sec7?7r

5. Solve each of these equations for 0° < 8 < 360°.

a) cotf=1 b) secO=+/2 <) cosec 0= —==

NE

d) cosecH=2 e) cot@=-3 f) secO=-1

6. Solve each of these equations for 0 < 8 < 27 Give your answers in exact form.
a) cosecB=1 b) sec6=1 c) cotf=-1

d) secO= 2 e) cot6=0 1) cosecO= —2

V3 V3

7. Solve each of these equations for 0° < x < 360°. Give your answers correct
to 1 decimal place.

a) secx=3 b) cosecx=4 c) cotx=0.9
d) cotx=5 e) cosecx = —g f) secx=-6
8. a) Solve the equation secx =7 for 0° < x < 360°.
b) Solve the equation sec? x = 49 for 0° < x < 360°.
9. Solve the equation 8 cot x — 5= 7 for 0° < x < 360°.

10. Solve the equation 7 + 2 cosec 8 = 4 for 0 < 6 < 2.

11. Solve each of these equations for 0° < x < 360°.

a) sec2x=1 b) cosec2x =4 ¢) 6cot3x+5=13
12. Solve each of these equations for 0° < x < 360°.
a) cosec(2x+90°)=1 b) 473cot%x=3 c) 2sec3x-5=2

13. Sketch these graphs on separate axes.

a) y=cosec3x for 0° < x < 360° b) y=sec2x for0° < x <360°
c) y=cot %x for -360° < x <360° d) y=2cosecx for 0° < x < 180°
e) y=cot(x+90°) for 0° <x<360° f) y=3sec2xfor0°<x<360°

14. Sketch, on separate sets of axes, the graphs of the following functions for 27 < x < 2.

a) y=6cosecx b) y=cot(x—§j

) y= % sec [x + %) d) y=cosec(2x-m)

Secant, cosecant, and cotangent




3.2 Further trigonometric identities

In P1, you used the identities tan 8 = ﬂg and sin® 8 + cos? = 1. We now turn our
cos

attention to finding and using two new identities involving sec 6, cosec 6, and cot 6.
Using the identity
sin?@ + cos’@=1

sin?@  cos’B 1

cos’8 cos*@ cos*O

We divide through by cos® 8 to give

=tan’6+ 1 =sec’0
Similarly, dividing sin® 0 + cos® 0= 1 by sin® 6 gives

sin@ cos*@ _ 1

sin@ sin*@  sin’@

=1 + cot>’0 =cosec’ O

1+tan?@=sec? O Remember that we should use ‘=’
rather than ‘=’ in identities to show
that the statement is true for all
values of 6. Although, don't worry if

1 + cot? 6 =cosec’ 0

These identities are useful in helping us to simplify expressions, ~ You use the ‘=" sign.
prove identities, and solve trigonometric equations.

Example 3
Prove the identity (tan 8 + cot 6)* = sec* 0 + cosec? 6.

SO R R R R R R R R R RN R R RN

Start with the left-hand side and

tan @+ cotB)’=tan’0 + 2 tan B cot @ + cot’ 6 <+
(tan B + co an an 6 co co expand the brackets.

i

=tan’@+ 2 tan@——+ cot’@ < Replace cot G with roy?

1
tan 8

—_ 2 2
=tan®0+2 +cot’0 Use the identities to replace tan? 6
with sec28 — 1 and cot? 8 with

= 20 20 —
sefis U dittont e | cosec? 8 — 1 and then simplify.

= sec’ 0 + cosec’ 6

Trigonometry
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Example 4
Solve the equation sec’0 + tan 0 — 1 = 0 for 0°< 0 < 360°.

. Substitute 1+ tan? @ for sec’ @ to get a quadratic
equation in tan 6.

1+ tan’@+tan@-1=0

tan’@ + tan 6= 0

tan @ (tan@+ 1) =0 < Factorise the equation and solve for tan 6.

tan@=0ortanB8+1=0

tan@=0ortan8= -1

6=0° 135° 180°%, 315, 360°

Exercise 3.2

1. Simplify the following expressions.
sin @ tan@

a) sec’B-tan?@ b ) F—————
) ) cosec 8 — cosBcot 8 ) 1+tan*@
sin @ 1+tan’ 0
d) tanOcotf p——- f) ——
) tanBco ©) 1+ cot?@ ) 1+cot?@

2. Solve the equation 2sec?8+ 3tan 8 - 4 = 0 for 0° < 6 < 360°.
3. Solve the equation secOtan 0 =1 for 0 < 8 < 2.

4. Solve the equation tan?6 - sec 8- 5 = 0 for 0° < x < 360°.
1

5. Prove the identity cosec 8 + cot 0= ———.
cosec B — cot @

Hint: Start with multiplying the left-
hand side by cosec & — cot 8 and then

6. Prove the identity tanf  l+secO 2 consider the right-hand side.
1 +secB tan @ sin 8

1-sin@
7. Prove the identity (sec @ - tan 0)* = i
1+sin@
8. Prove the identity bt . sin Bcos 6.
1+ cot* O

9. Prove the identity sec® 6 + cosec? 8= sec? 8 cosec? 6.
10. Solve the equation 4 cot’ @ - 2 cot 6 = 3 cosec® 8 for 0°< 6 < 360°.

11. Solve the equation sec 8 = 3 cos 8 + 1 for 0°< 8 < 360°.

Further trigopnometric identities




12. Solve the equation cosec’ 8+ 2cot8@=0for0 <8< 2m.
13. Prove the identity tan 8 + cot 8 = sec Ocosec 6.

14. Solve the equation 3cot 0 + 2tan 0 = 5 for 0°< 0 < 360°.
15. Solve the equation tan® 0 = sec 6 for 0°< 8 < 360°.

16. Prove the identity cot® 8 cos® 6 — sin” 6 = cot* 8 — 1.

A geometrical interpretation of the trigonometric functions

All of the trigonometric functions of an angle can be constructed geometrically,
in terms of a unit circle centre O, as shown in the diagram.

In P1 we saw that the
term ‘cosine (of )’

m originates from ‘the sine
'_., of the complementary

’ angle (to 6)'.

_—

/ cosec &

'
I

\
\.

0 < c0s6 > Q S ")}
sec @ ;’J
\ /f
//
=
i

Can you show how the diagram may be used to help explain the following identities?
cos B =sin(90° — @) and sin 8= cos(90° — @)
cot 8= tan(90° — @) and tan 6 = cot(90° — 6)
cosec 6 = sec(90° — 6) and sec 6 = cosec(90° — 6)
sin 6

tanf0= —
cos 6

sin?@+cos’8=1
1+tan?0=sec’ @

1 + cot? @= cosec? 9

Trigonometry



3.3 Addition formulae

In this section we will learn how to use formulae for sin(A + B), cos(A + B),
and tan(A + B).

It is important to recognise that sin(A + B) # sin A + sin B.

We can see this if we let A = 30° and B = 60°, for example.

Then

sin(A + B) = sin(30° + 60°) = sin 90° =1
and

sinA + sin B = sin 30° + sin 60° = % + g 1.
So sin(A + B) # sinA + sinB

We will now establish the formulae for sin(A + B) and cos(A4 + B).

In the diagram, OPQ is a right-angled triangle with OP = 1 unit.
From triangle OPT,

PT =1 x sin(A + B) = sin(A + B) (1)

From triangle OPQ,
PQ=1xsinB=sinB and 0OQ=1xcosB=cosB

We know that angle OQS =90° - A
and angle PQR= A
We also know that RQ = PQ cosA =sinB cosA (2)
and QS=0QsinA =cosBsinA (3)
Now

PT=RQ+ QS

So, using equations (1), (2) and (3),
sin(A + B) =sin B cos A + cos B sin A

Addition formulae




This is usually written as

sin(A + B) =sin A cos B + cos Asin B This result is the first of six

formulae we are going to find.
Similarly, from triangle OPT,

OT =1 x cos(A + B) = cos(A + B)

but
OTr=0S-TS=0S-PFR
and
OS =cosBcosA
PR =sinBsin A
6]
cos(A + B) = cosBcosA —sinAsinB
or This is the second of our six

cos(A + B)=cosAcosB -sinAsinB formulae.

Replacing B with —B in sin(A + B) = sin A cos B + cos A sin B, we obtain
sin(A - B) = sin A cos(-B) + cos A sin(-B)
or sin(A - B) =sin AcosB - cosAsin B
because cos(-B) = cosB and sin(-B) = -sin B.
Similarly, replacing B with -B in cos(A + B) = cos A cos B - sin A sin B, we obtain

cos(A - B) = cosA cos(-B) + sin A sin(-B)

or cos(A - B)=cos AcosB + sinAsinB

We now turn our attention to obtaining expressions for tan(A + B) and tan(A - B) by using the

; , _ sinf
identity tan 8= p—

sin(A + B) sinAcosB + cosAsinB
cos(A + B)  cosAcosB —sinAsinB

tan(A + B) =

Dividing the numerator and denominator by cos A cos B,

sinA cosB cosAsinB

+
cosAcosB cosAcosB

tan(A + B) =

cosAcosB sinAsinB

cosAcosB cosAcosB

tanA + tanB
1 - tanAtanB

Trigonometry




Replacing B with —-B, we obtain

tanA - tanB

tan(4A - B)=s————
1+tanAtanB

sin(A + B) =sin A cosB + cos A sin B
sin(A - B) =sin A cosB - cos A sin B

cos(A + B) =cos A cosB - sin A sinB
These formulae complete our set
cos(A — B) =cosA cosB + sinA sinB of six addition formulae (or

compound angle formulae).

tanA + tanB
tan(A + B) LT

l1-tanAtanB

tanA - tanB
tan(A - B) = e =

1+tanAtanB

Example 5
By considering sin(45° + 30°), prove that sin75° = T
2

---------------------------------------------------------------------------------------------------------------

sin(A + B) = sin A cosB + cos A sin B Put A = 45° and B = 30° into the

. . . addition formula for sin(A + B).
sin(45° + 30°) = sin45° cos 30° + cos45°sin 30°

e
-

Substitute exact values for sin 30°, sin 45°,

+
cos30° and cos45°.

X

2 |~

=L
N
+4f3
22

—

sin75° =

Example 6
Prove that 2 cos(B — %) =cosO+ \E sin 6.

T T . T
2 cos| @ —= | =2| cosOcos— + sinOsin— Use the formula
( 3 ] ( < 3) -— . )
cos(A — B) = cos A cos B + sin A sinB.
= 2{(:059 * ;~+ sinf x 3?-]
— Substitute cos % = % and sin % = —%.

Ec056‘+\/§sin9

52 Addition formulae




Example 7
Solve the equation cos(6 + 60°) = 2 sin(6 — 45°) for 0°< 6 < 360°.

cos B cos60° — sin Bsin60° = 2(sin B cos45° — cos B sin45°) «4—— Expand both expressions.

1 3

L 1
508 g- - sm; 0=2 ﬁsm 60— 5‘505 6 <@ Substitute values for sin 45°,
c0s45°, sin60° and cos60°.
2 2 3

[%+$]c059:[$+7] sin O ~—

Collect terms in sin 8 and cos 6.

ET S LR
22 22
\5 il =tan @ <t Rearrange to find tan 6.

tan 6 = 0.8394 ... o Find all the angles.

6 = 40.0°, 220.0°
We have worked in exact terms until the final step, but you
may wish to use a calculator at an earlier stage in the solution.

Exercise 3.3
1. Use the addition formulae to find, in exact form, the following expressions.
75° b) cos15° 105 4 ——
a) cos ) cos c) tan ) e

2. a) Prove that tan(8 + 45%) ELM.
1—tan@

341

b) Show that tan75° = y
3—-1

3. Given that sin = = and sin B= %, where oz and f3 are acute angles, without using calculators
find the exact values of

a) cosaand cosf3
b) sin(a+ f), sin(a — f), cos(ex + B), and cos(ox — f3)
c) tan(o + fB) and tan(ox - B).

4. GBvaluate, in exact form,

a) sin% b) cos % c) tanl%—2 d) sin(f%].
5. FEvaluate, in exact form,
a) cos10°cos20° — sin10°sin20° b) sin75°cos45° + cos75°sin45°
tan 103° — tan 58° tan 75° + 1
1 + tan 103°tan 58° tan 75° =1
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6. Simplify
a) sin(a+ fB) + sin(ax - fj)
b) cos(a+ p) + cos(a— fB)
c) sin(@- fB)cos o — cos(a — fB) sin o

7. Use the addition formulae to show that

a) sin(Q + %) =cos0 b) sin(90° - 6) =cos O
c) cos(90° - @) =sin8 d) cos(180°+ 8)=—cos 8
e) tan(O+ 180°)=tan O f) tan(mw-0)=-tan0.

cosec @ cosec @

8. Prove the identity cosec(8 + ¢) = T PR

9. Express cot(0 + ¢) in terms of cot 8 and cot ¢.

tane + tanf + tany — tano tanf tany Hint: Consider

10. Prove that tan(or+ f+ 7) = .
1- tanortan f — tan fftany — tana tany tanf{a + (B + )}

11. In the diagram, find the exact values of
a) the sine of angle PSR
b) the tangent of angle PSR
c) the secant of angle PQR.

12. Solve the equation tan 8 = 2tan(45° - 6) for 0° < 8 < 360°.
13. Solve the equation cos(@— %) = cos(ﬂ + %) for0< 0<2m

14. Solve the equation 5cos(8 + 45°) = sin(6 - 45°) for 0° < 6 < 360°.

¥R Addition formulae




3.4 Double angle formulae

We can substitute B = A into the addition formulae (section 3.3) to obtain three
new identities.

sin(A + B) =sinAcosB + cosAsin B
= sin(A + A)=sinAcosA + cosAsinA
= sin2A =2 sinA cosA

cos(A + B)=cosAcosB - sin Asin B
= cos(A + A)=cosAcosA —sinAsin A
= cos2A =cos’ A —sin’A

tan A + tan B
tan(A +B)= ———
1—tan A tan B
tan A + tan A
=tan(A+A)s—— ——
l-tanAtan A
2tan A
=S tan2A=s ——
1—tan” A

Further, using the identity cos? A + sin? A =1 to rewrite the identity for cos2A
in terms of sin A or cos A only, we obtain
cos2A=cos’A—(l —cos®A)=2cos* A -1
and cos2A=(1 -sinA) —-sinA=1-2sin* A
These results are called

the double angle
sin2A =2 sinAcosA cos2A =cos? A — sin?A e 2 tanA formilae -
=2cos’A -1 1—tan® A
i Itis important to know
=1 _ 2
=1=Zsin A all three versions of the
formula for cos2A.
Example 8

Solve the following equations for 0° < 8 < 360°.
a) 4sin20=sin0 b) cos20=cosO

sssessssesssssssssenisn sesssssesssssnnns SssssessesssessssetessBsEBEEREBEES sesessas Sssssessssessssssnssesane ssew

P> Continued on the next page
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sesssessennssee T Ry sensssseneens R N R T ssensasn

a) 4x2sin@cosB@=sinb <« Write the equation in terms of sin 8 and cos 8 only.
8sinBcosO-sin@ =0 4 Write in the form f(8) = 0.

sin@(8cos0-1)=0 -+——— Factorise the LHS and solve the equation.

sin@=0orcosf=

o =

6= 0° 180°% 360° or 8 = 82.8°, 360° — 82.8°

6=0° 82.8°, 180°, 277.2°, 360°

b) 2cos’0-1=cosO «—————— Write the equation in terms of cos 6 only.

2cos’0—-cosB-1=0

_ _ Factorise and solve the resulting quadratic
(2cos@+ 1)(cos@~1) =0 » equation in cos 6.
cos@ = H% orcosf@=1

6 =120°, 240° or 8 = 0°, 360°
6 =0°, 120°, 240°, 360°

Example 9

Express cos 360 in terms of cos 6.

cos30= cos(20 + 6) Express cos 38 in a way that the addition formulae
may be used.

SRk Sl " Usethe double angle formulae.

=(2cos’0@—1) xcosO—2sinOcos O x sin O
=2cos’0 —cosB — 2sin’60 cos OB

Ensure that the expression is expressed in terms

= 3 — = - ¢ S—
=2c0s’°0 —cos B — 2(1 — cos?O)cos@ = of cos 6 only.

=4cos’0-3cosf

Double angle formulae




Exercise 3.4

1. Solve these equations for 0° < 6 < 360°.

a) sin20=cosB b) sin26 -3 cos 6 =0

c) cos20+3cosf-1=0 d) 4co0s20+2sinf@-1=0

e) tan26+tanfB=20 f) sin20=tan®
2. Solve these equations for 0 < 8 < 2.

a) 2tan260=5tan® b) 5s5in26=2sin0 c) 2cos20=1-4cosb
3. Anacute angle 0is such that sin0 = % Find the exact value of

a) cos26 b) tan26 c) tan46.
4. For the triangle ABC shown in the diagram, calculate the exact values of B

a) sin2A b) tan2A c) sec2A.

8cm
A 15¢cm &

5. Iftan 0 = 3, where 180° < 8 < 270°, find the exact values of

a) sin@ b) cosO c) tan20 d) cos20.
6. a) Express (sinx - cosx)® in terms of sin 2x.

b) Express (cos* x - sin* x)(cos? x - sin® x) in terms of cos 2x.
7. Express sin40sin 0 in terms of cos 6.
8 a) i) Byconsideringsin(26 + 6), express sin 38 in terms of sin 6.

ii)  Solve the equation sin36 = sin 6 for 0° < 6 < 360°.

b) Express tan36 in terms of tan 6.

9. Express cot 20in terms of cot 6.
128 .
10. Prove that a) Y tane b) ﬂ = cot 0.
1+ cos28 1— cos26

11. Prove that

12. Prove that sec20 - tan 260 =

sineg cosax 2 cos(a— ff)

+ =
cos i sinf sin2f

cos @ —sin @

cosd +sind’
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3.5 Expressing a sin+ b cos 6in the form
R sin(6* o) or R cos(0 * )

We saw in P1 how to solve equations such as 2 sin(8 + 30°) = 1.
In this section, we will learn how to write expressions of the form

a sin @ + b cos 0 as a single sine or cosine and hence be able to solve ¥

equations such as 3sin 8 + 4cos 6= 2. .

If we draw the graph of y = 3sin 8 + 4 cos 8, we obtain a single wave

(see the graph on the right). This wave is the same as the graph we obtain

if we draw y = 5 sin(0 + 53.1°), so the expressions 3 sin 8 + 4 cos 6 and W V. 8
B 80 /360

5sin(B@ + 53.1°) are equivalent.

In order to write a sin @ + bcos 0 (a, b > 0) in the form R sin(0 + @),
let a sin 8+ bcos @ = Rsin(0 + o) where R and ¢ are constants to be determined.

Using addition formulae,
asin @+ b cos 0= R(sin O cos & + cos 0 sin ()
=RsinBcos 0+ R cosOsinox

We require the identity to be true for all values of 0, so we must equate the
coefficients of sin 8 and cos 6.

Rcosa=a

Rsinax=b
Squaring and adding these equations gives

R*cos? o+ R%sin? ox = a? + b?
Remember:

z v it 5 - 2
R¥cos* or+sin* ) =a*+ b L

R =a+ b

R=+a’+ b’, taking R > 0

Also,
Rsina
R coscr = T Remember:
sin a i
14 =tano
tanor= cos a
o= tan’lé
a
asin@+ bcos@=Rsin(@+ ), where R=+a+ b’
and o = tan™ b
a

Examples 10 and 11 will demonstrate how we can use this technique and how we
can extend it to writing expressions in one of the other three possible forms:
Rsin(6 — @), R cos(0 + o), or R cos(0 — ).

Expressing @ sin 8 + b cos @ in the form R sin(@ = «) or R cos(6 = o)




asin@+ bcosO=R cos(0— ) where R=+a' + b
and o=tan' &

b

asin@—-bcosO@=Rsin(6— o) where R=+a’+ ¥
and o= tan™ &

a

acosO—bsin@=R cos(68+ ) where R=+d’+ b
and a= tan™ &

a

\\ m

Note: It is important that you
learn the process of how to
find the values of R and &
as outlined in Examples 10
and 11, rather than relying on
learning these formulae.

Example 10

a) 2sin0@+ cos@=Rsin(0+ )

=RsinB@cosx+ RcosOsinx -«

Rcosox=2 =
Rsing=1
Rcosa+ R*sina=2>+1> =
R*(cos’ o + sin’ o) = 5
R=+5
Also,
}{sin [ |

,R(cosa__
1

tano = —
2

=5

a=tan™ 2 =26.57°
Thus, 2 sin @ + cos @ = /5 sin(0 + 26.57°)
b) 2sin@+cosf=2
V5 sin (8 + 26.57°) = 2 <
sin (8+ 26.57°) = 2

NG

BiLlesr s —

NG

A
£

0 = 36.9%, 90°, 396.9°

0 = 36.9% 90° for 0° < @ < 360°

a) Express 2sin 6 + cos 8in the form R sin(6 + o) where R > 0 and 0° < & < 90°, giving the exact
value of R and the value of & correct to 2 decimal places.
b) Hence solve the equation 2sin 6 + cos 8 = 2 for 0° < 8 < 360°.

---------------------------------------------------------------------------------------------------------------

- Expand the expression.

Substitute /5 sin(6 + 26.57°) for 2 sin 6+ cos 6.

- Divide both sides by /5.

0+ 26.57° = 63.43°, 180° - 63.43°, 360° + 63.43° =

Compare the coefficients of sin 8 and cos 6.

Square and add to find the exact value of R.

Divide to find tan « and then find ¢ 1o the
required accuracy.

- Find all the values for 8 + 26.57°.

Subtract 26.57° from each value
< - and check you only include
values in the required interval.

Trigonometry




Example 11

a) Express 3cos6+ 3 sin 6 in the form R cos(0 — o) where R >0and 0° < ¢ < 90°,
stating the exact values of R and o

b) Determine the greatest and least possible values of [(3cos 0 + \/3 sin 0)? — 5] as O varies.

------------------------- R R N T R R PR R R Y

a) 3cos0++/3sin0=R cos(0- )
=RcosOcosx+ Rsin@sinex < Expand the expression.

Rcosox=3
Rsina=+3 <+ Equate coefficients of sin 8 and cos 6.

R’cos’ o+ Rsin? o= 3% + (/3)?

R =12 (or 24/3)

Also,
tan o = %
o = 30°

3 cos 9+\/§sin6:ﬂcos(9v—30°) ~

- Write out the alternative form of the expression.

b) 3cos B+ /3 sin@= /12 cos(8 - 30°) <

- Use the expression found in part (a).

but -1<cos(6-30°)<1
“——___ Use the fact that the cosine of an angle of any

so =12 <12 cos(0 - 30°) < V12 size is between —1 and 1.

V12 < (3cos0++/35in 6) < V12

- Remember that the square of an expression
cannot be negative.

0<(3cosO++3sinh)’ <12 <t
~—5<_Z(3c039+\/§sin9)2—5<_i7

Greatest value of [(3cos @+ 3sin 8)* — 5] is 7
Least value of [(3cos @ + 3sin 0)® — 5] is —5

Exercise 3.5

[u—

Express each of the following in the form R sin(6 + o), where R > 0 and
0° < ¢ < 90°, giving the exact value of R and the value of ¢ correct to
2 decimal places.

a) 3sin@+2cos@ b) 10sinB®+ 7cosO
c) 2sinO@+cos@ d) 40sinB@+ 9cosO

Expressing @ sin 8 + b cos @ in the form R sin(@ = «) or R cos(6 = o)




a)

Express each of the following in the form R sin(8 — &), where R > 0 and
0° < & < 907, giving the exact value of R and the value of & correct to
2 decimal places.

i) 5sin@—-8cosf ii) 7sin6@ - 24cos®@
iii) 2sin 6 — cos @ iv) J/3sin6— 4cosO

b) Find the greatest and least possible values of each of the expressions

in part (a).

Express each of the following in the form R cos(0 + @), where R > 0 and

0° < ¢ < 90°, giving the exact value of R and the value of o correct to

2 decimal places.

a)
<)

a)

b)

c)

a)

b)

a)

b)
<)

a)

b)

cosB —sin 0 b) 2cos0—+/2sin6
4cos@—3sin 0 d) 5 cos 0 - sin 0

Express each of the following in the form R cos(0 — ), where R > 0
and 0° < o < 90°, giving the exact value of R and the value of &
correct to 2 decimal places.

i) 3cos@+4sinf ii) 5cos@+ 12sin6

iii) \/2 cos @ + sin O iv) sinf@+ cos @

Determine the greatest and least possible values of each of the expressions
in part (a).

For each of the expressions in part (a), find a value of 0 for which the
expression has its greatest value.

Express sin 0 + 2 cos 0 in the form R sin(0 + ), where R > 0 and
0° < & < 90°, giving the exact value of R and the value of ¢ correct
to 2 decimal places.

Hence solve the equation sin 8 + 2cos 8 =1 for 0° < 6 < 360°.

Express V3 sin 8 — cos @ in the form R sin(0 — ), where R > 0 and
0° < & < 90°, giving the exact values of R and .

Hence solve the equation +/3 sin 6 — cos 8 = 1 for 0° < 6 < 360°.

Find the greatest and least possible values of (+/3 sin 6 — cos )* as
Ovaries.

Express 2 cos 8 — 2sin 0 in the form R cos(6 + ), where R > 0 and
0° < & < 907, giving the exact values of R and .

Hence solve the equation cos 6 — sin 6 = % for 0° < 6 < 360°.

Trigonometry




8. a) Express4cos 8+ 6sin 8 in the form R cos(8 — ), where R > 0 and
0° < o < 90°, giving the exact value of R and the value of & correct to
2 decimal places.

b) Hence solve the equation 4 cos 6+ 65sin 8 = 5 for 0° < 6 < 360°.

c) Find the greatest and least possible values of [(4 cos 0 + 65sin 0)* + 5]
as @ varies.

9. Solve the following equations for 0° < 6 < 360°. S e

a) 4cosB@-6sin@=5 b) 7sin@- 24cos0=25 appropriate form of a single sine
c) 7cos@=5-sin0 d) 4cos@=2+3sin0 or single cosine to help you.

10. a) Express 2sin2x + cos 2x in the form R sin(2x + &), where R > 0 and
0° < < 90°, giving the exact value of R and the value of & correct
to 2 decimal places.

b) Hence solve the equation 2sin2x + cos2x = 1 for 0° < x < 360°.

c) Find the greatest and least possible values of 10 — (2 sin 2x + cos2x)
as x varies.

11. a) Express sinx + 4 cosx in the form R sin(x + ¢), where R > 0 and
0<as< %, giving the exact value of R and the value of ¢ correct to

3 decimal places.
b) Hence solve the equation sinx + 4cosx =3 for 0 < x < 2.

c) Determine the greatest and least possible values of [(sinx + 4cosx)? — 1]
as x varies.

12. Solve the equation 15c0s26 + 20 sin26 + 7 = 0 for 0° < 6 < 180°.

[Summary exercise 3 1

: EXAM-STHLE DUESTIONS : 3. Solve the equation 5¢cos20-11sin68+1=0

: 1. Solve the equation for 0° < x < 360°.

o _ — ik o < Q< o
cos(45° — 6) =sin(30° + 6) for 0 < 6 < 360°. o, mrove theidentiy

2. Solve the equation 6 cos @ — 2 sec @ =1 for tar{%+ BJ - tan(% = 9) =2 tan26.
: 0<6e<2m :

Summary exercise 3




§ 10.

11

12.

Prove the identity cosec 28 + cot 20 = cot 6.

1+sin 26 —cos 26
1+sin 26 +cos 28
b) Hence find the exact value of tan 22.5°.

a) Prove that = tan 6.

1-sin @
1+sin8’

Prove that (sec @ — tan 0)* =

Acute angles 6 and o are such that tan 8 =

and tan ¢ = %

4.
75
Find the exact value of tan(6 + 2 ).

Show that
cos 0+ cos[@ + ZTE} + cos (19 + 4?”) =0.

a) Express 5 sin 8+ 12 cos 8 in the form
R sin(0 + e), where R > 0 and

0 < o < 90°, giving the exact value
of R and the value of & correct to

2 decimal places.

b) Hence

i) write down the greatest value of
5sin 8+ 12 cos @ as O varies

ii) find a value of @ at which this
greatest value occurs.

Express 4 cos 8 — 5 sin 8 in the form

R cos(0 + ), where R > 0 and

0 < @ < 90°, giving the exact value of R
and the value of ¢ correct to 2 decimal
places.

b) Hence solve the equation

4cos@-5sinf=-2for0<6<360°.

c) Find the greatest possible value of
20 — (4 cos 8 — 5 sin B)* as B varies.

a) Express 7 sin 8 + 24 cos @ in the form

Rsin(6+ ), where R > 0 and 0 < o< 90°,

13,
: 14,

15

' 16.

17

: 18.

: 19.

: 20.

giving the exact value of R and the value
of & correct to 2 decimal places.

b) Hence solve the inequality
7 sin B + 24 cos 0 < 15 for 0 < 6 < 360°.

If sin(0 + @) = 2 sin(0 — ), prove that
tan@=3tano.

Solve the equation tan(6 + 45°) =1 —4 tan 6
for 0° < 8 < 360°.

Solve the equation
sin60° + sin(60° + x) + sin(60° + 2x) =0

for 0 < x < 360°.

If p = cosec @ —sinBand g = sec 8 — cos 6,
show that p*¢*(p*> + ¢* + 3) = 1.

a) Given that tan % = t, find expressions for
sin % and cos% interms of t.
. 2t 1-t
b) Show thatsin6= - and cos 8= —.
1+t 1+t

c) Hence solve the equation
4sinB =3+ 2 cosBfor 0° < < 360°.

Solve the equation 6 sec’2x + 5tan 2x = 12
giving all solutions in the interval 0° <x <
180°

a) Prove the identity sin 3x = 3 sinx — 4 sin’x

b) Hence, solve the equation sin3x = 2sinx
for 0° < x < 180°

Solve the equation sin(2x + E) = cos(2x — E)
1 3 6

giving all solutions in the interval 0° < x <
360°
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y=coté

Complementary angle identities
e sin(90° -6)=cosB
e tan(90° -8)=cotB

o sec(90° - 0) =cosecO

Addition formulae

o sin(A + B)=sinA cosB + cosA sinB

o cos(A+ B)=cosA cosB - sinA sinB
tanA + tanB

o tan(A+B)=——"—
1—tanA tanB

Double angle formulae

o sin2ZA=2sinA cosA

2tan A

e tan2A=———
1—tan A

I
w
g S
(=]
o
{
%]
b |
(=)
1
A
G-
]
°
I
{{=]
=
=]
[{=]
o
=
°
L]
—~
o
&
°
e
o
o
&
°
(s3]
w
(=]
-
- o M-—————_——————_
=
[
T

cos(90° - B) =sin @
cot(90° — 6) =tan 6
cosec(90° - ) =sec B

sin(A — B) =sin A cosB - cosA sinB
cos(A - B) =cos A cosB + sin A sinB

tanA — tanB

tan(A -B)=————
1+tanA tanB

cos2A =cos?A — sin?A
=2cos’A-1
=] -2sin’A

Expressing a sin 6 + b cos 6 in the form R sin(0 + ¢) or R cos(6 = )

o asinB@+bcosB=Rsin(60+ ) where
e asin@+bcosB=Rcos(6- ¢f) where
e asin@-bcosB=Rsin(0- ) where

o acosB-bsinB=Rcos(6+ a) where

a+b and o=tan™ %
a+b and o= tan”%
a*+b and a=tan” %
a+b and o= tan'lg
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Maths in real-life

Predicting tidal behaviour

The surface level of water in oceans all over

the world is seen to rise and fall periodically —
known as high and low tides. To develop a good
mathematical model of what is happening, you
need to understand the causes of the tidal motion.

Water is fluid and so it can move in response to different gravitational pulls from other
bodies in the solar system acting at different points. While the Sun has a huge gravitational
pull, it is very far away and so the tidal effects of the Sun’s gravity are minimal. Most of the
tidal effects we see are caused by the Moon, as the distances on the Earth’s surface are a
much smaller proportion of the total distance between the Moon and the Earth, and so the
gravitational field difference across the Earth is very small.

The Earth rotates on its axis every 24 hours and the Moon orbits around the Earth over a
period of 27.3 days. Both of these cause points on the Earth’s surface to move further away
from (and closer to) the Moon; however, the Earth’s rotation happens over a much shorter
time period than the lunar cycle, and so the effect is much greater.

'The first model would be a 24 hour cycle with two high h
and low tides — as shown here, a wave function in the 12
form I = a + b sin 30¢f gives a starting point.

In fact, because of the relative motion of the Moon, the
tidal cycle is actually about 24 hours and 50 minutes.

sizes are seen. The side of the Earth closest to the Moon

9

8

7

In this time, two high and low tides of not quite equal 6
5

experiences the biggest pull so there is a difference in 4

e simplest model - 12 hour cycle,

the size of the two high tides in a day — however, this
I:: repeating twice a day

is hard to model. Changing the period to 12 hours

25 minutes is easy (h = a + b sin29¢). T 5 ' T '

A2 12 24 36
Once the period is adjusted we can add in the effect of the
lunar cycle. When the Sun, Moon and Earth are directly in

~Y

48

line with one another, the smaller effect of the Sun is added ot of

to that of the Moon - this happens twice in the cycle: once

when the Moon is closer to the Sun than the Farth is tidal b
(at new moon), and once when it is further away

(at full moon) - and the highest tides occur.

These are known as spring tides and the corresponding
lowest high tides are known as neap tides.

-— 1o Sun

spring tide

Maths in real-life

Moon

()



This diagram shows an improved model. The
small effect of the Moon’s orbit is shown by : g |
the blue line at the bottom, while the purple ST
line shows the tidal pattern taking into

account both the effect of the Earth's rotation
and the Moon’s orbit. The phenomenon of the
spring and neap tides can be seen. e

The model for this graph is

y =7+ 45in(696x) + 0.4 sin(26.4x), where

x is measured in days. The mean depth at this position is 7 metres, with i
a main tidal effect of 4 metres, and the Moon’s effect is 0.4 metres. (Note that 696 360 x I;E

gives the period of the main tidal effect of 12 hours 25 minutes, and 26.4 = — gwes the period
of 27.3 days for the lunar effect to complete two cycles.)

Very high tides can cause untold damage F
when floods occur. A further regular
perturbation occurs at the two

equinoxes — where the axis of the Earth’s
rotation is perpendicular to the line
between the Earth and the Sun. This is
when the spring tides have their greatest
variation between high and low tides.
This is often a time at which stormy
meteorological conditions occur (perhaps
because of the way the bodies are moving
relative to one another), so the risk of

abnormally high tides and flooding is raised.

By understanding tides we can gain important insight into other problems, such as how oil spills
will behave — whether as the result of an accident in a drilling operation or some mishap to a tanker
transporting oil. The picture here shows an oil-drenched pelican being cleaned after the Deepwater
Horizon oil spill in the Gulf of Mexico in 2010. Experts suggested that the spill was being pulled
southeast by the loop current
and would be extremely '1 _ ‘- o~
difficult to contain. Being able ‘ %

to predict the behaviour of + ' : : o N‘ ,
pollutants — where they will go, i
how much they will become
diluted, etc. — is a crucial
component of making good
decisions about what
environmental measures are
needed in order to contain

the damage caused by toxic
materials.

= X _' F




4 Differentiation

In real-world applications, differentiation is often
complex, or involves trigonometric, exponential or
logarithmic functions. For example, differentiation is
used to maximise the electrical power produced by

a certain source, to minimise the stress on a hollow
tube, and to find the acceleration of a rocket which
moves such that the only force on it is due to gravity

and where its mass is decreasing at a constant rate.

Objectives

o Use the derivatives of e*, In x, sinx, cosx, tanx, tan ' x, together with constant multiples,

sums, differences, and composites.
Differentiate products and quotients.
o Find and use the first derivative of a function which is defined parametrically or implicitly.

Before you start

You should know how to: Skills check:
1. Differentiate expressions that can be 1. Find ¥ when
simplified to single terms in x, dx
e.g. find Y when e
dx a) ¥= 4
x*—12x -\/_ 1 >
= b) y=2x|4/x + —=|
Y 3%’ 43 x( * \/E) b) y=(a/x-1)2Vx+5)
I 72222 = 0 4.5
a) y 3x 4x,dx x2 + 8x q y:x 2x5+10x
! 1 Sx

3 1 1
b) y:8x2+2x2,d—y:12x2+x 2

dv a y=Lv [i_afx_s].

2. Differentiate composite functions using the il

chain rule,
e.g. find the rate of change of y with respect 2. Find the rate of change of y with respect
to x when to x when
6 8
a) y= b) y=——. __> __7
= Y= Bea ok e b) ¥ Jex+3
a) y=6(2x-3)", 1 4
Y _62x-3)2(2) = —12(2x - 3)2 VI T ey YT JGx+ 1
dx

b) y.: 8(5x + 1)*%
j_y =—d(Br+ 1) 3 (B) ==20(5x+ 1) 2
X




4.1 Differentiating the exponential function

In Chapter 2, you learned about the natural exponential function e*. This function
is the only function whose derivative is the same as the function itself.
Consider the graph of y = e*. Let x be a small increase in x.

YA
f.‘ y =g
/
T K] | i e o o
(x + o) //I{
fx) —————————;1/// ‘:
1 |
i i i
0 X X+ ox A
dy o flx +6x) — f(x) . e _ e oee™ et e“(e™ = 1)
dx Gx—s0 (x i 6x) e Gx—0 (x e ﬁx) g Ba—30 Sx dx—0 Sx
Sx
Consider with values of dx getting smaller and smaller.
X
& 01 | o001 | 0001 | 00001
(e 1)
3 1.05170925 | 1.00501672 | 1.00050023 | 1.00005006
X
G
We can see that as x — 0, —1
dx Note: You are not
dy _ expected to know this
Thus Ty —e(l)=¢ proof for the examination.

f \'th ﬂ X
Ifty=e" endx=e.

1f we want to differentiate y = e where k is a constant, we can use the chain rule:
Letu=kx=y=e"

Thusd_”:kandd_y:e”.
dx du

ﬁzd_yxﬂ:e“xk:e’“xkzke*‘
dx du dx

If y = ", then & = ek~
dx

Differentiation




In general we can say:

X dy ’ X
Ify=e™ then =L = f"(x) e,
y P (x)

Example 1
Differentiate

a) e’ b) e J e.

S Y PR P R R P R TR AN RN,

d
a) —er=7¢l

i < Substitute for k = 7 in ke**,
b) 4 o5t — 5emes = Use d_y = ["(x) €™ where [*(x) = 5.
dx dx
o) e =3¢ < Use ' = /) 9 where £(x) = 3x2.
dx
Example 2
d
Find < when
dx 1
a) y=4de* b) y:—Ze’E c) y=3e-
a) Y 4e*(2)=8e* < Write down 4 e and then multiply by d 2x.
dx dx

_L . 1
b) d—y ==7 e“c(lx 2) = Write down —2e‘/; and then multiply by ixz.
dx 2 dx
1
=—-—=ce€
Jx
<) o =5 eé(—lx 2 - Write down Se% and then multiply by ix‘.
dx dx
i
. 3e*
xz

Differentiating the exponential function



Exercise 4.1
1. Differentiate

a) eZJ.' b) e—S.\' C) e3.x+9
d) e &) —7e f) 5e*
g) 3e! h) —4e i) e

EL
j) e k) e’ 1 L.

E
2. Find Y when

dx
a) y — eflx b) y — e5+.\' C) y =9 93.\
d) Jf:—Se*)G e) y=3e*—2e* f) y:%e‘&"
g) y=e¥+e~ h) y=6e>—4e* i) y=(e*+2)(es—1) Hintforpart (i): First

. expand the brackets.

j) y=(Qe*-1) k) y= i +Xe 1) y=e®¥24+7e5%

3. Find the gradient of the tangent to the curve y = 5 e** at the point (0, 5).
4. Find the exact value of the gradient of the tangent to the curve y = e* - 6vx
when x = 1.

5. Find the coordinates of the minimum point on the curve with equation
y=e'-x

6. Find the coordinates of the turning point on the curve y = 2x — e+ 3 and
determine whether this point is a maximum or a minimum point.

4.2 Differentiating the natural logarithmic function

In Chapter 2, you learned about the natural logarithmic function log_x.
This is also known as Inx.

If y = log x (or y = Inx), then & = x.

Sincexzey,%:ey.

y
dy 1 dy _ 1 _ 1
As —=— wecansay £ = — = —,
de  dx de e’ X
dy

Ify:lnx,thenj—yzl.

X X

Differentiation




Example 3

d
Find & when
dx

o o o

a) Let u= 5x, then Ll

dx
y=lnu,sod_y:l
die u
dy dy du 1 5
— = x—==x5==
dvy du dx wu i
Thusd—y=i—l
d o Y

a) y=In5x

—
—

b) y=In(3x"-2).

R T T Y

sessssssnsvesensane e

Use the chain rule.
Substitute 1 = 5x to have your answer in terms of x.

Note: Alternatively, we could say y=In5x=In5+Inx,
AR (since In5 is a constant).
dx x X

EJ1:7'><f'(x):7>< S -

<-—
35

dx f(x)

5¢—1 5x—1

b) Letu:3x2—2,thend—u=6x
X
y=Inu,so d_y =k
due u
d—yzd—yxéizlxﬁx:ﬂ <4 Use the chain rule.
dy du dx w 1
Thus & 6x . .
us 5 = 5 < Eliminate 1 to present your answer in terms of x.
dy f'(x)
If y =1n[f(x)], then =L = ——=Z,
y =Infx), then X = %
Example 4
Differentiate
a) In(9x+2) b) In(e*— 3x) c) 4In8x d) In(5x-1)".
g 2-fE_ 9 o ) =(Ox+2),f'(x)=9
qx Kx) oxiD W=t a.L=
d * -3
B “ fl)=(e-30), flx)=e-3
d}’ f'(x) s 8 _ 4 ’
R ) =8, )= 8
d In(5x-1)Y=7In(5x-1)

It is best to use laws of logarithms (covered in
Chapter 2) to first simplify the expression.

Differentiating the natural logarithmic function



Exercise 4.2
1. Differentiate
a) In4dx b) In(l - x?) c) In(3+ 5x) d) In(x*+2)
e) In(ex-7) f) ln\/; g) In(6x-3)* h) In(4x* +2x)
; 1 ; 1 9x —2
i) In— i) 3In4dx k) 2In—= 1) 6ln .
x X 3
2. Find ay when
dx
a) y=8ln3x b) y=In2x c) y=In(2-4x) d) y:61n1’2€
e) y=Iny(Q2x+1) ) y=InG)" g) y=In(3e" - 2x) h) y=9In(x* + 3x)°
. 2 . 2 Sx 7
= e = x —8 = = s
iy 51r1(7 x) i) y=4lnJ(* -8x) k) y=Ine I) y=In 13y

3. Find the gradient of the tangent to the curve y = 4 + lnx at the point (1, 4).
Find the gradient of the tangent to the curve y = In(x* + 1) when x = 3.

Find the exact coordinates of the point on the curve y = In 3x where the gradient is %

& e

Find the coordinates of the turning point on the curve y = x — Inx, and
determine whether this point is a maximum or a minimum point.

4.3 Differentiating products

Consider y = uv where u and v are functions of x.
Let 8x be a small increase in x. Let Su, 8v, and 8y be the corresponding
increases in u, v, and y.
If y=uy
y+ 8y = (u+du)(v+ dv)
wv+ 0y =uv+ u dv+ v éu + Su dv

Sy =udv+vou+dudv

Sy _,8v , 8u 5,87
ox u6x+v5x+ uﬁx
Asﬁx—)O,ﬁu—)O,s—y%d—yEe@anda_vqﬂ

dx dx’ 8x dx’ Ox dx’

Thus,£=u&+v%+0& Ifyzuv,thend—yzuﬁ+vd—u

dx dx dx dx dx dx dx’

This is known as the product rule.

Differentiation




Example 5

Find %Ji when y = e* (&* - 3).
X

S T P T T T R R T PR R

Let y = uv where u = e*and v = (x’ - 3). < yisaproduct of two functions.
j—” =2e*and % = <——— Differentiate « and differentiate v.
X G
dy dv du
Lt e e TG Rl .
e udx vdx <t |se the product rule
j_y =(e*)(3x%) + (x° — 3)(2e*) < Substitute for each of the four unknowns.
X
=e™ (2x +3x" - 6) ~<————— Factorise by taking out the common e*.
Example 6

Find j—y when y = (2x+ 1)(x - 5)*
x

bhssssssssssssssssnssnssnssnsans sssssss sssssase P T T T T T T P T T T T TR T

Lety = uvwhereu=(2x+1)andv=(x-5)% <« yisaproduct of two functions.

% =2and % =4(x - 5)’(1) < Differentiate « and differentiate v.

dy  dv du

A u—&; + VE <—— Use the product rule.

%’ =(2x+ 1)[4(x—=5)°] + [(x—5)"](2) <+ Substitute for each of the four unknowns.

=2(x-5P@x+2+x-5)

Factorise by taking out the common
- e -
s g factor 2(x — 5.

Differentiating products




Example 7
4x(5x + 2
Show that j_}’ _ e when y = 4x’V2x +1.

---------------------------------------------------------------------------------------------------------------

Let y = uv, where = 4x* and v =/2x + 1.

< yisaproduct of two functions.
du _ 8x
dx < Differentiate 1.
dv _ 1 = = 1 1
W T e < Differentiate v = (2x + 1)2.
dy dv du
5 2, B < Use the product rule.
d 1
El% = (4x°) [ JmJ + (yf2x +1)(8x) <« Substitute for each of the four unknowns.
X
4x° + (2x + 1)(8x)
= T x4+ D) 201 =A2x+1

sz +1

_ 4x7 +16x7 + 8x

,}2.1: +1

20x° + 8x

A2x +1

4x(5x + 2)

,/2x +1

4x(5x + 2
Thusd—y: *Ox +2)

dx ,/2x+1

Exercise 4.3
d
1. Use the product rule to find d%: when

a) y=xe b) y=(4x-1)(x*-5) ) y=xx’+1
d) y=+x(nx) e) y=x*2x+5) f) y=x(x-3)

g) y=e*(4dx+1)
B y=x(x+3)
m) y= 6e"r‘:(x +4)

x—2
x+2

p) y=

h) y=x(x+3)*
k) y=e(2x-1)*

n) y=4x>e*
) _2x+3
vy 1 —-5x

i) y=x"lnx
N -
)y 2t

0) y=2e"In2x

Hint for part (I): Let
y=x(x+1)" and use
the product rule.

r) y=(+1)In(3+1).

Differentiation
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2. Find the gradient of the tangent to the curve y = x?e~* at the point (1, %)

3. Find the equation of the tangent to the curve y = x(1 + x°)* when x = 2.

2
4. Show that % _rdx -l when y= (x + 4),}(3{2 -1).

J& =1

5. Find the exact coordinates of the turning point on the curve y = e*(1 + x)
and determine whether this point is a maximum or a minimum point.

4.4 Differentiating quotients

Consider y = % where u and v are functions of x.
v

Let 8x be a small increase in x. Let du, v, and Oy be the corresponding
increases in 1/, v, and y.

-
It §i= =
u + du
Sy =
ARy v+ v
u+ ou
6y7v+5v —7
u+du
T v+ dv v
~ v(u+du) —u(v+ov)
B v(v + 8v)
~uv+vOu—uv—udv
Vi+vdv
ou_ oy
dy _vﬁx Ox
Sx v+ vdy
Asdx—0,vdov — 0, 3y—)ﬂ @—> d8v —
o0x dx’ 8x dx
du_, dv
Thus, & — _dx dx
? dx v2
vd_u_“gz
Ify:E, ‘thend_y M
v X v

This is known as the quotient rule.

Differentiating quotients




Example 8
2
Find & when y= .
dx 1
u
Lety = > where u=x’and v ="+ L. “————— yisaquotient of two functions.
44 _ 302 and & = 2x <~ Differentiate « and differentiate
T e u V.
d 1’% = HE
a-if» = M < Use the quotient rule.
5

X Ex) ()
dy = i 1B =00 < Substitute for each of the four unknowns.

dx ( + 1)
_ 3y F3x —Ox
(x* +1)°
_x(xr+3) ’ .
= — <~ Factorise by taking out the common x*.
(x"+ 1)
Example 9

4x+ 3
B when y = -

dux Jex—1

S R PR R RN R RN

Lety- % where u=4x+ 3 and v =/(2x—1).

du _4

e 7 Differentiate « and differentiate v.

av i 0 o
—:—2—122=2—12
dr L1y (2) = (221
ydu _ dv
dy _ dx  dx <« Use the quotient rule.
CI_?C vz

1 L
d_y = (2x—1)2(4) —(4x +3)(2x 1) * < Substitute for each of the four unknowns.

dx =
_ (2x—1) [4(2x —1)—(4x +3)] a 1
= S Note: (2x—1) 2 x (2x—1)' = (2x—1)?
4x—7 ( )_L
E 2x—1 = o 1
(2x—1)2 —— B

i

Q2x-1"  (2x-1)

Differentiation




Exercise 4.4

1. Use the quotient rule to find 2 when

dx
2x 2x 2
a) y:x+3 b) y:ex k) y:xj—ﬁl
3 3
) y:H—xe ) y:2—xx f) yZZe”x—x
_3x-—4 3x+5 _ 6x
8 Y= ) ¥ L
. ey _E _ 54
) y_{l—xf ) y= =2 D "~ lnx
) 5 ) 3x + x* ) ¥
m) y= ——— n) y= 0) y=
7 (1-2a7%) T 7 1++/x
16 V@x+1) L2
p) y=5—" qQ y=+—"" 1) y=——.
] 2 (1+2x7)
2. Ify= X find the values of x at the points whereQ:O.
2x -3 dx

2
3. Find the equation of the normal to the curve y = % at the point (2, 4).
A=

2
4. Tfy=—*_ find 4.
xre=] da?

5. Show that the coordinates of the turning point on the curve y = —= 2

are(1 Jﬁ). ey

o

3
6. Show thatify = 7Inx =X thep Yz when x = 1.
& d% &?

Differentiating quotients




4.5 Differentiating sinx, cosx, and tanx

When we differentiate trigonometric functions, we assume the angle is
measured in radians.

Consider y = sinx where x is measured in radians.

Let &x be a small increase in x. Let 8y be the corresponding small increase in y.

If y=sinx
y+ 8y =sin (x + Ox)
= sinx cos 8x + cosx sin 8x < sin(A + B)=sinA cosB + cosA sinB
As 8x — 0, cos8x — 1 and sin 8x — dx o
"\ Note: The proof of this limit is beyond
Thus, ¥+ Oy = sinx + Ox cosx this course.

sinx + &y = sinx + 0x cosx

Oy = 8x cosx

g—y = COSX

X
. (dy)_dy _
gl‘r_x)}](gJ— T COSX

dy

If y = sinx, then == = cosx.
4 dx

We can use a similar proof to differentiate cosx. The result is stated below.

dy
Ify= then =2 = —sinx.
}’ COSX. en d.?C SN x

Consider y = tan x.

sinx
cosx

Therefore y =

—— e 2 2 1
cosx(cosx) —sinx(—sinx) _ cosx+sin”x _ .

Using the quotient rule: 9 - -
dx COSZ X cos X COs X

d
If y = tan x, then Ey = sec’ x.

Differentiation




Example 10

Find iy when
dx

a) y=coslx b) y=5sin3x? ¢) y=7tan (4x + %)

a) Letu=2x= 4% -
dx

dy

y=cosu = e —-sinu = —sin2x % Substitute u = 2x.
dy dy du .
= s ——
= L * = Use the chain rule to help you.
= (-sin2x)(2) = —=2sin2x < Substitute for each of the two unknowns.
b) Letu=32= du _ 6x Substitute # = 3x2 and use the chain rule to
dx help you differentiate.

y=5sinu = L =5cosu
i

dy
— = (5cosu)(6x d
dx ( )(62) - Usingthechainruled—y=j—yx %
= 30x cos 3x? * 1
c) Letu=4x+%:>%:4 “————— Substituteu=4x+%.
X
y=7tanu:>d—y=7sec2u
du
d_y_ 2 Using the chain ruleﬂ=d—yxﬁ
T = (7sec’ ) x 4 -— g - dn
= 2 =
= 28sec (4x+ 2)
= 1 -
cXercise 4.5
d
1. Pindaywhen
a) y=sin5x b) y=6tan§ c) y=cos(x*+ 2x)
d) y=4tan’x e) y=sin(x’—7) f) y=>5tandx
g) y=cos’x h) y=sin2x cosx i) y=x*tan3x
j) yzg k) y=sin’3x cosx 1) y=4tan\/;.
X

Differentiating sinx, cosx, and tanx



2. a) Ify=(cos2x - sinx)? show that g}’ = —(cos2x — sinx)(2 sin 2x + cosx).
X

d
b) If y = e* tanx, show that ay = e*(sec’x + tan x).

¢) Ify=In(cosx), show that % = —tanx.
d) Ify=xe* show that % =e* (xcosx + 1).

3. Find the gradient of the tangent to the curve y = 3 sin2x when x = %

4. Find the equation of the normal to the curve y = x — sinx at the point (%, % = 1).

dy _

5. Show that — = —% sec’ x when y = In+/cos x.

dx
6. Find the coordinates of the turning points on the curve y =2 sinx + cos2xfor0 < x < 7

and determine whether these points are maximum or minimum points.

7. Show that the maximum value of the curve y =x — 2 sinx for 0 < x < 2rxis %r +4/3,
and find the minimum value of the curve.

2
8. If y =In+/1—cosx, show that dy I ——

dx*  2(cosx —1)

4.6 Implicit differentiation

Functions of the form y = f(x) are explicit functions as y is given explicitly in terms of x.

However, some functions that have two variables are not of this form — that is, sometimes
we are not given one variable explicitly in terms of the other. We call these
functions implicit functions.

Examples of implicit functions include:
(1) ¥*+3x2-3y=0

(2) xIn(y+2)-x2=2y

2
@ =5
y‘+x

How can we differentiate an implicit function?

We use implicit differentiation when one of the variables is not given
explicitly as a function of the other variable.

Differentiation




To illustrate the process of implicit differentiation, we will consider the

example x* + 3y = 6xy.

Differentiating each term with respect to x,

. d d d
Thus 2x + —3y=6x —y + 6y &
us 2x y = 6x —y+06y 2 x

Thus 2x + [%3}:] [%j = (6x)[% yj [z] + 6y

dy _ 6, &
Thus2x+3a—6xa+ 6y
Rearranging gives:

d)’
3-6x)—-=6 2x

o6y— 2.
Thus dy M i
dx 3—6x

Using the product rule on
the RHS.

] ‘d'hfecansalyi ixdl

dx dy dx’

. dy
<« Collect t — on LHS.
olie ermsin £ on

. . d 2y ﬁ
involving y. For example, P 3y’ ) =6y -4

It is important to note that when differentiating an implicit equation

d g ; 5 ;
to find d—y, we must use the chain rule to differentiate any expression
x

Example 11
Find j_)’ in terms of x and y when x* — 3y° = 47,
x

=y Ui -
dy dy

2x=8y 2 + 92 L

e ydx Y dx

S 8yt 9y° < Rearrange for ==

Differentiate each term with respect to x.

&~ Rearrange terms.

«—————————— Factorise.

dy

Implicit differentiation




Example 12
Find the equation of the normal to the curve 5x* + 6xy — y* = 10 at the point (1, 5).

R R R P P R PR R PN RN,

d d
10x + GxEy +6y— 2yd—§ =0 <« Use the product rule to differentiate Buxy.
dy
(6x — 2y)a;-c~ =—-10x - 6y <+ Rearrange terms.
dy
At(1,5)= (6 - 10)3 == 1830 < Substitute for x = 1 and y = 5.

So it s =40 oy
e =

Thus gradient of tangent to curve at (1, 5) = 10

. 1
Gradient of normal to curve at (1, 5) = ~lo < m,xm,=~1for perpendicular lines.

Equation of normal at (1, 5) is

1
y—95= _E(x — 1 “— (y-y)=mx - x,) is the equation of a straight line.
or —10y +50 =x -1

<« Multiply both sides by —10.
or 10y =51 —x

Example 13

d
It is given that y=tan' x. Find an expression for a}’

R R R P R P PR T T PR RN

x=tany <+— Use what you learned in P1.
d
l=sec’y E)’ <+— Differentiate with respect to x implicitly.

dy
1=(L+tan’y) 3= < Use 1+fan’y = sec?y.
Rearranging:

o
1+tanzy dx

and substituting x=tan y gives

Differentiation




dy 1 You are given this
Ify=tanx, then == . formula in the formula
ot book

If y=tan™' ax, then, using the chain rule with u=ax,
RN T B
dx du dx 1+ (ax)?

Exercise 4.6

1. Find % in terms of x and y when

a) X+2y-y=5 b) xcosy=3"+x

c) y=>5tan'3x d) x’+xy°=5x

e) X2+y’=y f) 2xy-3y=y"-7x

g) xlny=1+x h) y=e‘tan™' x

) P+ +2x-4y+4=0 j) x*+xy’—-y*=5

k) xsiny-ysinx=38 1) e=2x

m) y=xtan'x n) y+y=x—-x

o) xer+2y=1 p) y=xlny

q) y:itan‘lzx r) siny+x%? =2y + cosx.

2. Find the gradients of the tangents to the curve x> + 6)* = 10 when x = 2.

3. Find the equation of the tangent to the curve x* + y* = 2xy at the point (1, 1).

dy 2y2 - 2xy3

4., Showthat ==——=— """ when x*y* - 2x)? = 3y.

dx 3362}/2 ~ AP =3 Y xyz »
d bl |

5. Given that In(xy) = x* + y? show that 2 M
dy  x(1-— 2y°)

6. Ify=tan™(l-2x), find, in its simplest form, an expression for d_y

4.7 Parametric differentiation

When x and y are related via a third variable, f, then t is called a parameter.
Equations which state x and y in terms of f are called parametric equations.

Suppose x =’ and y = 1*.
We can look at values of x and y for particular values of t.

Parametric differentiation




o 2 [<1]o 1 ]2
x| 8|10 1]s
ly | a1 ]o|1]4

If we want to try to relate x and y directly, notice that
peti=sEt =t and y=i? =93 = 15,
Therefore x* = y°.
dy _2x _2f _ 2

U licit differentiation, 2x = 3y> <, th = ===
sing implicit differentiation, 2x = y Us o= 7 a3

We can also use the chain rule to produce the same result, but without
needing to eliminate t. Consider again x = £ and y = £~

dx

dy
Sr=3fand = =2t

Differentiating with respect to t = —

. . dy dy dr _ 1
Using the chain rule, o dr L 2t % e

=2
3

When differentiating parametric equations involving a parameter f,
dy _ dy dx

dr  dr  dr
This is called parametric differentiation.

Example 14
a) Ifx=2Fandy=>5t>-6, ﬁnd 1n terms of 1.

b) Find the value of o when x = —16.

d
a) = 6%, d—}; = 10¢ <————— Differentiate x and y with respectto 1.
dy 10t _ 5 dy _dy . dx
dx et 3t O drar
b) Whenx=-16 = -16 = 2 < Use x = —16 to find the value of .
= ==2
dy o Substitute this value of ¢ into the
dx -6 6 expression you found in (a).

When differentiating parametric equations where the parameter is an angle, 6,

— = — + — where @is in radians

Differentiation




Example 15
The parametric equations of a curve are given by x = 2cos6, y =sin’ 6,0 < 0 < 2.

Find the values of 6 when the tangent to the curve is parallel to the x-axis.

---------- T Y PR R P R R N R T R R R R

ad—';~ = -25sinb, % =2 sinf cosf <« Differentiate x and y with respect to 6.
d_}’:zsinf?cosﬂz_cosﬁ — d_y:ﬂ_ﬁ

dx —2sin@ dx d& déo

When —cosf =0, -— d—z = 0 when tangent parallel to x-axis.
Hz%andg’—; «———— 0s0<2n

Exercise 4.7

1. Find % for the following parametric equations.

Give your answer in its simplest form.

a) x=20, y=4t>+1 b) x=1t%-6t y:t+%

c¢) x=3cost, y=2sint d) x=4t>-7, y=7+8t

e) x=t-sint, y=2-cost f) x:li—t, y=t*-9

g) x=t*-3 y=2+\/; h) x=3cos’0, y=3sin’0

i) x=t2+3t-1, y=3(t-2) j) x=cos20, y=4sin6

k) x=acosf, y=bsind ) x=2-£, y=5+4t-+¢

dy t'+1

2. 'The parametric equations ofacurvearex=t+%,y=r—%. Showthatayzrz L
3. The parametric equations of a curve are x =4sinf, y = cos 2.

Show that % = —sint.
4. The parametric equations ofacurvearex=2+t,y=f%—6. Show that & = _2¢=.

X

5. The parametric equations of a curve are x = cos 20, y = 20 + sin26. Show that L -
X

Parametric differentiation



6. The parametric equations ofacurveare x =2t + 3,y =1 —4.
Find the gradient of the curve at the point for which x = 5.

7. The parametric equations of a curve are x = 3, y = %

Find the equation of the normal to the curve at the point (-1, -9).

Give your answer in the form ax + by + ¢ = 0, where a, b, and ¢ are integers.

d A
8. Show that & = G when x = a(0 + sin @) and y = a(l - cos 0), where a is a constant.
dx 1+ cosf

9. The parametric equations of a curve are x = 2f, y = 41° — 8t °.

d
Find the two values of f for which a}’ = (.

10. The parametric equations of a curve are x = 5cos 3f, y =2 sin3, 0 < t < %
d
a) Find 2 in terms of t.
dx

b) Find the coordinates of the stationary point on the curve.

[Summary exercise 4 J

1. Find d_y when

X

-1
a) y=e™ b) y=In(4x*+5) c) y=tan(4x) d) y:zxr_s
e) y=SnX f) y=(x+12x-2)7 g) y=—— h) y=6InJ/3x—4)
& Jix* 1)
i) y=xy’-o j) y=7lne* k) y:fe ) y=x1+x7)
nx
x 2
m) x=3f-5, y=% n) y=—2e"g 0) 2 +3x)>—y'=6 p) yzi(ze :3)
q) y:e"‘“z“ r) ypextes s) x=1+2cos, y=3-6sind
t) y=log (3x+1) u) x=(+2), y=8f-2¢ v) y=xlnx
w) yzl\/';z X) X+xy-y'=1 y) yzétan‘1 L0x.
—X

T

KAM-STHLE QUESTIONS

e 3 dy  cot'x
Find the exact coordinates of the pointon - L e J;) thier dx 5 JE

o

2

d
the curve y = 3xe** at which 2 -0

2

Differentiation




* 10.
' 11.
12,

S 13.

The parametric equations of a curve are

x=(1+t),y=(1-t).

a) Express % in terms of t, simplifying
your answer.

b) Find the point on the curve where the
gradient is parallel to the x-axis.

Find the equation of the tangent to the curve :

xt+2x

at the point (2, 8).

- X8

The equation of a curve is x Iny*= 6.
Find the gradient of the curve at the
point (2, e).

A curve has equation 2x” + y* + 5x — 3y = L.
Find the equation of the normal to the curve
at the point (-1, 4). Give your answer in the
form ax + by + ¢ = 0, where a, b, and c are
integers.

Show thatif y =4 tan™! [%J, then

d_y_ 8
dx 4+ x°

A
If y = tan™' 2x, find an expression for d ):

The parametric equations of a curve are
x=ty=">.

Find the equation of the tangent to the curve :

at the point (1, 1).

COs5

x

The curve with equation y = <= has one

stationary point in the interval 0 < x < 7.
Find the exact x coordinate of this point.

If y = 2 cos (Inx), show that

xzcr_y+xd_y+y:0
da’ dx

5x* —10x+9

Given that y = , x# 1, show that

(x—-1)

: 14

15.

 16.
:17.
- 18.

- 19.

20.

21.

£ 32

dy 8
(x - 1)

The parametric equations of a curve are
x=t+L,y=4-1£.

Find the equation of the normal to the curve
at the point where x = 2.

If y = V'5x° + 3, find the value of [j—yj
X
when x = -1.

Find the exact coordinates of the stationary
point on the curve with equation y = xIn3x,
giving your answer in terms of e.

Prove that there are no stationary points on
ax+b

the curve y = where a, b, ¢, and d are

cx -+
constants and ad # bc.

x

Prove that if y = e 2sin2x, then

dy  ,dy
4 42 4 17y=0
dxz + dx + y

By differentiating 5 show that if

L
sin2
y =cosec26 then j_; =-2cosec20 cot26.

Show that the curve with equation
y = sinx — 8tan x cannot have any
stationary values.

'The equation of a curve is

-y -5x+3y+13=0.

a) Find j—i in terms of x and y.

b) Find the values of y at the stationary points.

The parametric equations of a curve are
givenby x = (£ -2)%, y = H(t - 6).

Find the coordinates of the stationary point
of the curve.



Differentiating the exponential function

If y = e*, then &y e".

X
If y = e*, then i ket
dx

d ;
If y = e, then < = f'(x) e,
y-¢ en o (x)e

Differentiating the natural logarithmic function

If y = Inx, then % = %
Iy = In [£)] then % - ’;((;))
Differentiating products
If y = uv, then % = u% + v%
Differentiating quotients
du dv

Differentiating sin x, cos x, and tan x

- dy _
If y = sin x, then 3. = oS-
dy :
Ify= , then = = - i
y = cosx, then —= sin x
dy >
If y = tanx, then £ = sec’x.

X

Ifyztan‘lx,thend—z L
dx 1+

Differentiation



Implicit differentiation

We use implicit differentiation when one of the variables is not given
explicitly as a function of the other variable.

d
When differentiating an implicit equation to find d_y’ we must use the chain rule to
X

differentiate any expression involving y. For example, di(l’: y')=6 yj—y.
X X

Parametric differentiation

When differentiating parametric equations involving a parameter ,

dy _dy  dx
dx dr ~ dr

When differentiating parametric equations where the parameter is an angle, 6,

dy _dy . dx is in radi
gy iy 1 where 6 is in radians



Integration

Objectives

o Extend the idea of ‘reverse differentiation’ to include the integration of e,

Integration is the basic building block for solving

any equation which describes how things move

or change. Such equations are called differential

equations and you will meet them in Chapter 10.

Integration is used to design and construct dams
like this one, which need to be built to withstand
extreme stresses caused by the water they hold back.

_r
ax +b’

sin(ax + b), cos (ax + b), and sec’ (ax + b) (knowledge of the general method of integration

by substitution is not required).

o Use trigonometrical relationships (such as double angle formulae) to facilitate the integration

of functions such as cos® x.

o (Pure 2 only) Understand and use the trapezium rule to estimate the value of a definite

integral, and use sketch graphs in simple cases to determine whether the trapezium rule gives

an overestimate or an underestimate.

Before you start
You should know how to:

1. Differentiate standard functions,

3a42 )

e.g. a) %(e
= 3 eh+2

e.g.b) %(sin 3x + tan 2x)

=3cos3x + 2 sec?2x
2. Use trigonometrical relationships,

e.g. show that
cos 4x = cos* x + sin* x — 6 sin” x cos?x.
cos 4x = cos? 2x — sin? 2x

= (cos? x — sin® x)? — (2 sin x cos x)?

=cos* x + sin* x — 2 sin? x cos’ x

— 4 sin’ x cos® x
= cos* x + sin* x — 6 sin? x cos® x

Skills check:

1.

Differentiate

a) y=e»lye~

b) y=sin4x - 3 cos2x
c) y=In(3x+7).

Show that sinf tan 8 + cos 8 = sec6.




ﬁxnﬂ

In Pl thaty = | ax"dx =
n Pl you saw that y ja X 1

+ cfor n # —1, and more generally that

w1 (ax+b)™ L
J'(ax+b) dx—ia(?ﬂ_l) +c (n=2-1)

In Chapter 4 we looked at how to differentiate a number of other functions. In this chapter we will
extend the reverse process of differentiation - that is, integration - to cover many other functions.

5.1 Integration of e>+*f

In section 4.1 you saw that i(e‘““’) = ae™"'. This means that _ _
dx It is extremely important you do not

forget to write the + ¢ at the end if
you are not integrating between two

. 1 ..
Jea_\+bdx = _eu.\+b iy

a definite limits.
Example 1
Find Jez”g’ dx.
The coefficient of x in 2x + 3 will be a multiplying
f e = 1 (e+7) < factor when the (e*9) term is differentiated, so
2 you need to include the % to compensate for this.

When the integral has no limits (called an indefinite integral) as in Example 1, the
integral is determined only up to a constant (the “+¢’ term). However, all the functions
you will learn to integrate in this chapter can appear either as definite integrals (where
you integrate between two limits), or as improper integrals (where the function is

not defined at one end of the interval). Example 2 looks at a definite integral, and
Example 3 at an improper integral.

Example 2
1
Calcul;ntcj e> 3 dx.
1]

L 1
f eX " dx = {le””} @ The function is as in Example 1, but the + ¢ is not needed
! 2 0 because we are integrating between two definite limits.
1 1
= Ees - Eez < Evaluate the expression at the top and bottom limits.
1,5 3
= E(e —C If we were to put the constant term + ¢ in the integral above, it would just

cancel out when we evaluate the expression at the top and bottom limits.
As such, we do not need to include the + ¢ when integrating any expression
between two definite limits.

Integration of g2<*




Example 3

1
Calculate J’ e’ dx.
11 ....... JSHEEs s s AR e eRAte o RAT Rl A AR SESATu e oA RSN S S SR A
2x+43 = |l el = A . o
f e dx = [Ze ] The_lntegral is as in Example 2, but the lower limit
i oo is different.
_ les — lim le2g+3 Remember that (forrqally)_tms is the justification
2 as—s| 2 for saying the lower limit is 0.
=lsg
2
1
2
Example 4
Calculatej e dx.
N ' ; '
J'Je"de (e,+1)2dx The function needs to be expressed with a linear
power.
= feéxﬂ di : The derivative of the power is % so you need to
4 multiply by 2 to compensate.
=(x+1)
= 2e? +c

Example 5
Find the area bounded by the graph of y = e, the x-axis, the y-axis, and the line x = 1.

S R R R RS RN R R RN

1 . iy
A= J o2 i Sketching the graphs helps 10 + =il
0 identify the required integral. [
8
; Integrating and substituting £
= [leh} <t——— the limits gives the area 61
+ D we're asked for. S
4
b el
7 3 3
o]
1
{} Ll L T T Ll L T T T T ‘:‘

Integration




Exercise 5.1
1. Find the following indefinite integrals.

a) Jel"‘l dx b) je“-‘“ dx <) je"‘s*’” dx

d) fe'”‘"” dx e) fe‘“‘”” dx f) [vVe™'dx
g) fez"‘ dx h) fe”“’ dx i) |Ve ™ dx

2. Calculate the following definite integrals, leaving your answers in terms of e.

a) jle“ dx b) J‘me‘**d.x c) jle*"l dx

d) Jléle“dx & f112e3*'dx f) J.ZZe‘“'d.x
g) Je a5 h) j22e‘2"d.x i) jle"'s“‘dx
0 0 1
3. Calculate the following integrals, giving your answers as exact values.
a) fme"' dx b) jmje"' dx c) lnse"' dx
0 0 n2
d) jlmz}e“dx & jlane“dx f) jle s

g) J e*n3 dx h) J eln2 dx i) j e1n3 dx

4. Find the area bounded by the graph of y = e*, the x- and y-axes, and the line x = 3.
5. Find the area bounded by the graph of y = e™*, the x- and y-axes, and the line x = 2.

6. Find the area bounded by the graphs of y = e, y = €™, the y-axis, and the line x = 2.

k ea
T Pindj e~*dxand hence ﬁndj e*dx.

8. Calculate the following improper integrals, leaving your answers in
terms of e where appropriate.

a) jme‘h dx b) jme‘4‘ dx c) jmel‘* dx
d) Ju 4e* dx e) jl 6e* dx f) jz \/erx

9. Theline y = e* between x = 0 and x = 3 is rotated through 360° about
the x-axis. Find the volume of the solid obtained.

Integration of g2<*




1

5.2 Integration of =

In section 4.2 you saw that di(lnx) = L1 This means that Il dx=Inx+c.
X X X

However, the function In x is only defined on the interval YA
0 < x < oo, which is written as (0, o). Does this mean that the

integral Jld.x is also only defined on the interval (0, =)?
X
In actual fact, the integrﬂjldx is defined for all real x
X

except x = 0, and we will explain how this is the case by

using the graph on the right.

1 2
If you look at the graph of y=— and consider the rotational ’\i
X -34
symmetry about the origin, it is clear that the shaded areas are )
the same size. Therefore the integral Jldx from -3 to -1 -5-
X
should just be the negative of the integral from 1 to 3
(it’s negative because it lies below the x-axis). The resolution of this dilemma
is surprisingly simple — but the first step is to do something trivial:
write L as —L, which is obviously true provided x # 0.
g o
Then J_—ldx =In(—x)+c.
—X
1
So Jldx =lnx+cor j—dx =In(—x)+c, which can be summarised as
X X
1
~J‘—dx =ln|x|+c
X
More generally you saw that i(ln(ax + b)) = —9% | giving the general result
dx ax +b
i i It is normal practice only to write the modulus
J == dx = ;]nlax +bl + ¢ sign in the case of definite integrals.
For indefinite integrals it is normal to restrict

the function by the condition ax + & > 0.
Evaluating the two integrals above,

J %dx= [ln|X|]f =In3—-Inl=1In3and J_ ldx:[lnbc”i =Inl-In3=-1n3
? gy % 3

L

so this not only gives the correct absolute value, but gives the correct sign for the
function being below the axis.

Integration




Note:

@ Inx gets large without bound as x tends to infinity and so there will not be any
improper integrals involving logarithms.

@ In0 does not exist, which means that definite integrals in this form need to be
defined on an interval (¢, 8) such that ax + b = 0 anywhere in the interval.

¢ It does not matter whether the end points of intervals are included or not, so definite
integrals can be defined on an interval [, ], i.e. e<x <f3, or (o, B), which is
o<x<p.

Example 6

Find J'2 2 = dx and state the values of x for which the answer is valid.
—

---------------------------------------------------------------------------------------------------------------

The derivative of the denominator is 2, so it is

2 o = ol 3 -
j Ix — 3 dx =In(2x = 3) + ¢ valid for x > 2 : an exact integral, and 2x — 3 > 0 when x > %

Example 7
a) Sketch the graph of y = %
Xi—
1

=
5 =

b) Mark on your sketch the two areas represented byj -
s X

j dx = - f L g
_ e 2 e
d) Calculate the two integrals in part (c) and verify the result.

---------------------------------------------------------------------------------------------------------------

dxandj g,
.

¢) [Lxplain, using the symmetry of the reciprocal function, why

4
5
c) The vertical asymptote is at x = 2, so the two intervals (-2, —1) and (5, 6) are symmetrically

placed on either side of the asymptote. Therefore the two shaded areas are equal.

g B ) L ) ] ;
d) J; mdxf [lﬂlx 2']_2711'13 In4 711'1(4)

j L dx=[ln|x—2[] =ln4 —In3 = ln(i) = —ln(i) as required
B3 3 1

tearation o _1 -
Integration of —~=—




Example 8

Find Jﬁ dx and state the values of x for which the answer is valid.

The derivative of the denominator is —1, so the

2 dx=-2In(5—-x)+¢ x<5 < integral requires a multiplicative constant of -2 and

S the answer is valid when 5 — x > 0, i.e. when x < 5.
Example 9
a) Sketch the graph of y = -

1
b) Mark on your sketch the area represented byj 1 2 dx.
o S
c) Explain why this integral cannot be calculated.
a) and b) ¢) The vertical asymptote is at x = —2, so the interval
YA (=3, 1) includes the asymptote, and you cannot

integrate across an asymptote as the area would
be of infinite size.

> Both the area above the x-axis and the area below the
x-axis are infinite.

Example 10

5
Calculate J : ! > dx, giving your answer as a single logarithm (i.e. in the form In k,
3 X —

where k is real).

; 5
J - dx = [lln|3x = 2@ g Use the standard form of the logarithmic integral.
, 3x—2 3 :
s Lo & Evaluate the expression at the top and bottom limits.
&l 3ln
s = First combine the two logarithms, then use the laws
= gln(7) = ln[ { ?] <& of logarithms to take the 1 into the logarithm as the
cube root. 3

Integration




Example 11
Calculate J-

i

i

: dx, giving your answer as a single logarithm (i.e. in the form In £,
x

where k is real).

--------------------------------------------------------------------------------------------------------------

1 1
J' U = l:—lln[7 _ le:i - ~ Use the standard from of the logarithmic integral,
5 7—2x = " noting a is negative.
1 1
= —Ehﬁ = [—Elnl 1) <} Evaluate the expression at the fop and bottom limits.
First combine the two logarithms, then use the laws
= —111— Inv/2. < = of logarithms to take the% into the logarithm as the
square root.
Example 12

]
Calculate J. ;de, giving your answer as a single logarithm (i.e. in the form In k,
—AK

where k is real).

(] ]
j 1 dx = [—lln|7 — le} < The integral is the same as in Example 11, but with
s 72 2 1 ~ different limits.
s (——llnl) < Evaluating the expression at the top and bottom limits
2 now requires taking the absolute values of -5 and —1.

Eln— In+/0.2 - As before, first combine the two logarithms, then use

B the laws of logarithms to take the d into the logarithm
as the square root. e

When In1 occurs in calculations, it can either be
replaced by O, or you can combine it into a single
logarithm using the standard laws.

Exercise 5.2
1. Find the following indefinite integrals and state the values of x for which the answer is valid.

a) J.# dx <) J 7 dx d) f 10 4x
2x —1 7x +3 5—-2x
—6 , - -2 -3
©) Jl—Sxdx 2 J6x+5dx 8 J.x+ldx
—0.5 —12 =)
l) J +e J) J2x+1 k) J9x+16dx l) fle—3dx
Integration of ——

ax+o




Calculate the following definite integrals. Note that parts (a) to (¢) use the
same indefinite integrals as you calculated in parts (a) to (c) of question 1.

3 1 7 2 L 7

a) dx b) dx c) dx
J: 2x -1 e ol g 7X+3
! 1 2

d) 4 dx e) 2 dx f) ~7 dx
Jo 5—2x J, 4-2x o 2=k
r4 -4 1

g) 2 _dx h) = dx i) 5 4
J, x—=7 Jao 7-2x L 9i=3%

Find the area bounded by the graph of y = 3;, the x- and y-axes, and the line x = 3.
+x

Find the area bounded by the graph of y = 4 > the x- and y-axes, and the line x = 2.

X +

1 e
37 T3+

Find the area bounded by the graphs of y = , the y-axis, and the line x = 2.
X

5.3 Integration of sin(ax + b), cos (ax + b), sec2(ax + b)

In section 4.5 you saw that

a(sin(nx + b)) = acos(ax + b)

%(cus(ax +b)) = —asin(ax + b)

%(tan(ax +b)) = asec’(ax +b).

This means that the following are the standard trigonometric integral forms.

Jsin(ax +b)dx = —%cos(ax +b)+c
Jcos(ax +b)dx = ésin(ax +b)+c

Jsecz(m +b)dx = %tan(ax +b)+c

Remember: If you are using calculus
with trigonometric functions, then x (or
equivalent) is measured in radians and

not in degrees.

Since all the trigonometric
functions are periodic,
there will not be a limit

Example 13
Findjcos 2x dx.

1
J.COSZJC % = —2~sin2x +c

™~

S P R R R R R R R RN

Remember to divide by the coefficient of x (i.e. 2).

to which an integral
approaches as x tends to
infinity, so there will be
no improper integrals of
this sort, but care does
need 1o be taken with
the discontinuities that
occur with tan x and also
with all the reciprocal

trigonometric functions.

Integration




Example 14
Find Jsin (3x + E)dac
4

fsin(3x + %)dxz w% cos(3x + E) +c

Divide by the coefficient of x (i.e. 3).

Example 15
a) Sketch the graph of y = sec x and use it to sketch the graph of y = sec?x.

b) On your sketch, shade the area corresponding to J-zsec2 xdx and estimate to 1 significant
figure the value of the area. -

c) Calculate J‘Zsec:2 xdx.

1]

a) y=secx A y=sec’x
44
34
2 -
1
o & O oz amX o oaw Y x mt
g | o
34 i
4 4

b) The area is approximately 0.8 wide (the exact width is E) and between 1 and 2 high, mostly

closer to 1, so estimate is 1 correct to 1 significant figure.

¥
4

r T T T T T T

T
o = b an

=Y

c) J4secz xde= [tanx]? =1-0=1
(1]

AV [ntegration of sin(ax + b), cos(ax + b), sec*(ax + b)




Example 16
By first sketching an appropriate graph, find the area bounded by the graph

of y=sin (x - %), the x- and y-axes and the line x = .

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

The sketch shows that the area required is partly above YA

and partly below the x-axis, so the integral will need 4

to be done in two sections: 3 }’=sin[x— %)
i) fromO0to %, ii) from % to . :

J;%sm (x - %)d_x = [—cos (x = %)T =-1-(-0.5=-05 \ 1

so the first area is 0.5 (below the axis)

J:: sin (x — %)dx = [—cos (x - %H; =05-(-1)=1.5

Thus, the total area required is 0.5 + 1.5 = 2.

=3
_a
Exercise 5.3
1. Find these integrals.
r ~
a) |cos2xdx b) |sin (Zx + E) dx c) J sec? (3x + 1) dx
) 4 12
( (m «x i r
d) |cos(m-x)dx e) cos[———)dx f) J —sin[2x——]dx
J 2 4 4
20T d h ( 1 . 1 . d . (" 1 dx
g) Jsec (E - 5x) x ) ! — sin (Ex) X i) ‘J COS[4_ ;x)

2. Calculate the following definite integrals. Note that parts (a) to (c) use the
same indefinite integral as you calculated in parts (a) to (c) of question 1.

a) J-ICOS 2xdx b) f351n(2x+ ) <) fﬁsecg (3x + %)dx

4 JECOS 2xdx e) J- cos| —~— ﬁ) dx f) jisin (Bx - %) dx
% 2 T o :71_(_1 l . 3 B l E

g) J%sec (E 3x)dx h) J.4£ 5 cos E dx i) J:cos (2 2x)dx

3. A curve passes through the point %, 2) and its gradient function is sec*x.
Find the equation of the curve.

Integration




4.

and the linex = .
5.

the y-axis, and the line x = %
6.

the lines x =% and x = Z.
4 3

Find the area bounded by the graph of y = cos(x + %), the x- and y-axes,

Find the area bounded by the graphs of y = cos (x + %),y = cos(x + %),

Find the area bounded by the graph of y = sec’ Fx + 3, the x-axis, and

5.4 Extending integration of trigonometric functions

In Chapter 3, you met a number of trigonometric identities which

can be used to extend the range of trigonometric functions you can

integrate. Those identities were

1 +tan®* 0 =sec? 0
" B R These are formulae you should know well enough that if you are
o 1+ cot?B@=cosectt faced with an integral involving trigonometric functions which you
. o cannot integrate, you can manipulate the expression into one which
o sin2A=2sinAcosA can be integrated using these formulae.
o cos2A=cos’ A —sin® A The double angle formula for cos 24 is particularly useful in the
=2cos’A -1 forms sin? A = % (1 — cos 2A) and cos® A = % (1 +cos 2A).
= — in2
=1-2%in.'4 The other formulae developed in Chapter 3 will normally be hinted
o tafiZAm a0 A at, or given, if you need to use them in an integration problem.
1-—tan” A
Example 17
Find the integrals
a) |cos®xdx b) J‘12 sin® x dx.

a) J.c:os2 xdx— J%(l +cos2x) dx

=lx+lsin2x+c
2 4

b) J.IZ sinfxdx = |12 x %(l — cos 2x)dx

=6x-3sin2x+c¢

R R R R Y

Use the double angle formula to get an integrable
form.

S Remember to integrate the number part as well as
the trigonometric function, and include the + c.

\ Again the double angle formula transforms this
into an integrable form.

Extending integration of trigonometric functions



Example 18
Calculate the exact value of J'EJJ tan? 6 d6.

(8]
S T P PN R R RN TR RN,

r ¥id i Z . ;.
q N _ 5 The use of the identity makes this a function
J; clbeii J; A(sec’0-1)do you know how to integrate.
=[4 tan O — 49]:? “e  These are standard integrals.
4 A i
=== = =) Evaluate the expression at the top and bottom
[JE 6 ] limits explicitly to show your working.

4 2

= s

Example 19

a) By writing 2x = 3x — x and 4x = 3x + x, show that sin 3x cos x = %(sin 2x + sin 4x).

b) Hence calculate fg sin 3x cos x dx.

o]

TS5 i Anis Using the compound angle formulae
a) sin 2x = sin (3x - x) = sin 3x cos x - cos 3x sin x < for sin x gives functions that you know

sin 4x = sin (3x + x) = sin 3x cos x + cos 3x sin x how to integrate.
Adding the two expressions
= sin 2x + sin 4x = 2sin 3x cos x

=> sin 3x cos x = % (sin 2x + sin 4x)

¥ig ¥ig
b) jﬁ sin 3x cos x dx rjs %(sin 2x + sin 4x) dx <= Using part (a).
(4] (4]

— {—- l cos 2x — ,é. cOS 4jc:|g - Integrate the Standard fOI’mS.

I

Il

Il
5|U" |

Integration




Example 20

a) Show that (3 sin x —cos x)* = 5 — 3 sin 2x — 4 cos 2x.

iy
b) Hence calculate JZ (3 sinx — cos x)*dx.
0

---------------------------------------------------------------------------------------------------------------

a) (3sin x — cos x)* =9 sin’ x — 6 sin xcos x + cos’x @ Expand the square.
—gx Ll — 3 1
=9 x 5(1 cos 2x) — 3 sin 2x + 2(1 + cos 2x) - Use the standard formulae.

5 <t Simplify to the required form.

i I
b) J.Z (3 sin x — cos x)’dx = J.z (5-3sin2x—4cos2x)dx «—— Usepart (a).
a a

T

i

- {Sx + %cos 2x — 2 sin Zx} <4 Integrate the standard forms.
(4]

= 5_”_3_0 — 0+§_0 Be careful not to assume
22 2 the limit at 0 is simply '0".
_5t_ 4
2 - Simplify the answer.
Example 21
a) Find i(c:os x + x sin x).
dx Remember ‘hence’ means that you are
B Elence calen o J‘ 2 e expected to use a previous result.
0

---------------------------------------------------------------------------------------------------------------

a) %(cos x+x sin x) = —sin x +sin x + x cos X = x cos X «w=—— Use the product rule.

g 2
b) Jz (x cos x) dx = J_ (%(cosx + xsinx)J dx e Use part (a).

- [cos s i x:F = Integration is the reverse process
0 to differentiation.

Substitute at upper and lower
limits.

:(0+~g~]~(l+0)

A

=g
2

Extending integration of trigonometric functions




Example 22

cot’ 0 2 3 _C_Qtig_
a) Show that ——— = cos* 0. b) Hence calculate ] 20 de.
1+ cot® , \(1tco
cot” @ cot* 0 N
a) = - e |Jse the standard identity.
1+cot’@ cosec’@ b
cos” 0
sin” 9 . .
<&~ Express in terms of sin and cos only.
[sm 0 ]
= cos? @

b)f cotQ 40 = E
l—t—cotﬁ - 5

_ | *(1+cos28 40 < !Jse the standar.d form to convert to an
integrable function.

cos’ 9) de ¢ Use part (a).

< |ntegrate.

3
= [% + —J —(0+0) @~ GSubslitute at upper and lower limits.

Example 23 . i
4 3
a) Show that4sin*@ = %—2 cos 20 + 22 b) Hence calculate j' 4 sin* 6d6.
(i}
sodn s 22
a) 4sin°0 = (2sin"0) : Using the double angle cosine formula
= (1—cos 20) twice to remove powers of cos @ and sin 8
=1-2 cos 20 + cos’ 20 ‘ gives the required result. An alternative
1+ cos 40 approach is to start with the right-hand side
=1-2cos 260+ s and work down to single angle expressions.
40
= % —2 cos 20+ =

Fig I
b) I 4sin 0dO —f (5—2c 29+°°3249)d9 <t~ Use part (a).

_ 3 06— sin20 + sin4f |2 < In_tegratlgn _IS the reverse process to
2 ! differentiation.

3n 3r
. [? A 0) (0-0+0)= "4 %~ Substitute at upper and lower limits.

Integration




Exercise 5.4

1.

10.

Find these integrals.

a) J.ccs2 2x dx b) JSiHE 3xdx c) J-(l + tan” 2x) dx
d) J.(sin xcosx)dx e) j(sinz xcos’ x)dx f) j(sin x +cos x) dx

Calculate the following definite integrals. Note that parts (a) to (c) use the
same indefinite integral as you calculated in parts (a) to (¢) of question 1.

a) J.I cos” 2x dx b) Jg sin® 3x dx ) IF (14 tan’ 2x) dx
0 0 0

d) J.E (1-cos 2x)’dx e) J”(l +2sin x)dx f) IE (sin x —cos x)"dx

A curve passes through the origin and its gradient function is cos® x.
Find the equation of the curve.

Find the area bounded by the graph of y = sec® x, the x-axis, and the lines x = % and x =2

3

Find the area bounded by the graphs of y = cos? x, y = sin’® x, the y-axis, and the line x = %

a) By writing 2x = 5x - 3x and 8x = 5x + 3x, show that sin 3x cos 5x = %(sin 8x —sin 2x).
¥y

b) Hence calculate jﬁ sin 3xcos 5x dx.

4]

a) Show that(sin x +5 cos x)> =13 + 5 sin 2x + 12 cos 2x.

b) Hence calculate JAE (sin x +5 cos x)*dx

a) Show that di(cos 2x +2x sin 2x —2x* cos 2x) = 4x” sin 2x.
X

b) Hence calculate _[5 (x? sin 2x) dx.

2tan @ 2tan @
a) Show that ———— =sin 20, b) Hence calculate _— d9.
1+tan- @ L 1+tan® @
1—tan® .
a) Show that —anz ¥ cos 2x.
l+tan” x

Hence calculate

e l+tan®x )
b) j { tan- “] de il & j [m} i
o L 14+tan® x l1-tan” x

Extending integration of trigonometric functions



5.5 Numerical integration using the trapezium rule — Pure 2

So far in this chapter you have extended the number of types of function

that you can integrate. If you continue to study mathematics you will
continue to extend your range of integrable functions, but there will

Sometimes you will not
be able to integrate a
function because you

always be functions for which you need to calculate a definite integral, have not yet met the

but you do not have a standard technique to use. technique, but at times

There are a number of numerical methods that can be used to approximate
the area under the curve, using only the values of the function at particular

you may be faced with
a function for which no-
one has yet discovered

points. In this course you only need one such method: the trapezium rule. 3 way to integrate it —

We will first consider using the trapezium rule with a simple function

and it can be as simple
as (x tanx).

(y = x?) which you can also integrate. In doing so, we will get some

idea of how good the approximation is, and what factors affect the accuracy.

Y4

14
0.9+
0.8+
0.74
0.6+
0.54
0.4+
0.34
0.2+
0.14

h

o

0.6+

0.4+
0.34

0.2+ i
0.1+ M g

) v

4

L

N"

o

010203040506070809 1

>
X

The area to the left of the green vertical line under
1

the curve is given byflxzdx = {lxﬂ =1 o0=1

. 37 |3 3
We will split the interval (0, 1) up into an increasing
number of strips and join the points on the curve by
straight lines, creating trapeziums for which we have
geometric formulae to calculate areas.
If there was just one strip, the approximation would
actually be the area of a triangle because the left end

starts on the x-axis — at the origin, and it would give

an estimate of % for the area.

Even with two strips it is clear (visually) that the
approximation will be reasonable. The two geometric

shapes have areas % and %, which when added
together give an estimate of 0.375 for the area under

the curve, compared to the true value of 0.333
(a 12.5% overestimate).

Since the chords joining the points on the curve always lie
above the curve itself, it is clear that every estimate with
this method will be an overestimate. For most functions this
will not be the case.

Integration




YA

/ With five strips you can see that the chords joining
14 the points on the curve follow the curve very closely,
0.9+ s0 it is no surprise that the area now is 0.34 which
0.8 is overestimating the true area by only 2%. With 10
0.7 strips the overestimate is down to 0.5%.

0.6
0.54
0.4+
0.3
0.21
0.14

>
X

T - T T T T T T T
010203040506070809 1

o

Let us consider the simplest form of the trapezium rule: using a single interval
to estimate the integral of a function f(x) over the interval (a, b). Then

f frE s (b—a)[w}

(The area of a trapezium is the average length of the parallel sides multiplied by
the distance between them.)

You have seen how the accuracy can improve if we divide the interval up into a number
of strips, but we then have to calculate the area of each strip separately.

A less time-consuming way is the following: A
If we choose equal strip widths, that will be a common
factor in each area, and then consider the lengths which l
make the parallel sides of the trapeziums, apart from the %8
first one (at a) and the last one (at b), each occurs 0'8h“"\\
as the end of one strip and again as the start of the next %77 e
one. We can therefore express the estimate obtained o = T{x\)\_\
by the trapezium rule in a formula rather than actually e (@, (@)} /
. 0.4+ : /
working out all the areas separately. o .10
0.2-
0.1
0| 01020304050607 0809 1 X

Numerical integration using the trapezium rule — Pure 2



Some formal notation is needed to allow us to express this as a general rule.
If the interval (a, b) is divided into n intervals, each of width 4, then let
v, =1f(a), y, =fHa+h), y,=1f(a+2h),..,y, = f(a+nh) = £(b).

The trapezium rule can then be stated as The formula for the
- trapezium rule will
b—a not be provided in the
# examination, so you
need to remember it
one way or another.

b
A= %h{yo + 3+ 200+ s bt ) zf £(x) dx, where h =

Note that the first y value is labelled y because with # strips there are actually

n + 1 values being used. It is helpful to think about this formula in words relating

to way it is derived: the bracket is ‘the sum of the end values plus twice the sum

of the other values’ The formula usually refers to n intervals, but sometimes it may

refer to n + 1 ordinates. (The x-coordinate is known as the abscissa and the y-coordinate
as the ordinate of a point in the plane.)

Example 24

I
a) Use the trapezium rule with five intervals to estimate jE (x cos x) dx, giving your answer
correct to 3 decimal places. :

b) In Example 21, you saw that the exact value of this integral is % — 1. Calculate the

percentage error in the estimate using the trapezium rule with five intervals.

---------------------------------------------------------------------------------------------------------------

a) In order to get the answer correct to 3 decimal places we need to use at least
4 decimal places in our working. The example below uses five decimal places.

n 0 1 2 3 4 5
ol = |2m_zm | 3z | 4m_ 2% |5%_x
¥ 10 10 5 10 10 5 10, 2

y=1f(x) | 0| 0.29878 | 0.50832 | 0.55397 [ 0.38832 0

You may find it

= L x L x {0 +0+2x(0.298 78 +0.508 32 +0.553 97 +0.388 32)} helpful to underline
2 10 the values that are to
=0.549 58... - 0.550 (3 d.p.) be added twice.

W

. _ Show the value obtained in your calculation to more accuracy
than required and then give the rounded value.

P Continued on the next page
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(5—1)—0.550 o N
b) % error = % 100% = 3.6% This is the actual error divided by the true
(E . 1) value, expressed as a percentage.
2
'The diagram shows the function y = x cosx in the required interval, along with the
five trapeziums whose areas have been used to calculate the estimate. You can see that
multiplying cos x by x means the symmetry
of the wave function has been lost. 0.6 |
Y=XCOSX| —
It is also clear from the sketch that the Ly p \
trapezium rule will give an underestimate %4 / '
of the integral for any number of intervals. %37 A '
02 -
0.1+ ,/
: x oz m 2w  ox
10 5 10 5 2
Example 25
it
a) Use the trapezium rule with five ordinates to estimate J L de, giving your
answer correct to 3 decimal places. L
b) Show that the exact value of this integral is In 3.
¢) Calculate the percentage error in the estimate found in part (a).
) 0 1 2 3 4
1 1.5 2 215 3
2 1 2 1
y=fa) L 3 2 : 3
otk DN 2 In this instance, the values of f{x) can be left
= 575" :l * 3 s (5 i 5 * EJ} as fractions and the exact value of A can be
67 calculated before rounding to the required
=a=l.116 66... 1.117 (3d.p.) accuracy.
3
b) f Ldx ~[lnaf =In3-In1=In3
1
67 This is the actual error divided by the true value,
In3 — =— Lo
- ( 50) o expressed as a percentage. The negative sign
¢) % error = EE L only shows that the estimate is larger than the
<0 Lhe percentage error is 1.6%. true value, so the absolute value is given.
You may be given a sketch of the function being integrated and asked whether you can
tell if the trapezium rule gives an overestimate or underestimate. However, you will not
normally be asked about the percentage error in the estimate.




Example 26

a) Use the trapezium rule with two intervals to estimate A

L
2 . =i
J. JJ1-sinx dx, giving your answer correct to 1
0

2 decimal places.

b) The diagram shows the graph of y = /1 —sinx. State,

with a reason, whether your answer to part (a) is an

=18
ST
(4%
=
>y

overestimate or an underestimate of the integral.

---------------------------------------------------------------------------------------------------------------

a) [0 1 2
T T
x| 0 4 B

| e Two intervals only gives one value to be multiplied by 2

in the formula. It may feel different, but the process is
exactly the same. Two intervals are used quite often in
=0.8177...= 0.82 (2d.p.) examinations to cut down on 'busy work’.

A=1xZx(1+0+2x05412) <*—
2 4

b) 'The graph is curving in such a way that no chord lies above the graph at any point in the

interval (0,%), so the trapezium rule will give an underestimate for the integral.

Example 27

b
Use the trapezium rule with two intervals to estimate J. e * dx, giving your
answer correct to 2 decimal places. !

---------------------------------------------------------------------------------------------------------------

1 2
0.5 1 Sketch ’[ht.e2 graph
ofy=e™.
1 0.7788 0.3679

A=1xLlxl1+03679+2x0.7788)
2

=0.7313...= 0.73 (2d.p.)

If you study Probability and Statistics you may
recognise the shape of this curve as that of the
normal distribution.

Integration




Exercise 5.5

1. For each of the following, use the trapezium rule with two intervals to
estimate the value of the definite integral to 3 significant figures.

a) Jf cos’ 2x dx b) Jg A1+ sin 3x dx
<) JE\/1+tan22xdx d) f 1+/4x dx

1 ez"' 1 1
dx —dx
°) £1+e-" ) L L+9x

2. For each of the following, use the trapezium rule with the specified number

of intervals to estimate the value of the definite integral to 3 significant figures.

a) J: cos® 2xdx [4 intervals]
0

iy

b) _[2 A1+ sin3x dx [3 intervals]
a
piels)

c) J V1+tan®2xdx [6 intervals]
0

d) J 1++/4x dx [5 intervals]

e) Jl e di [4 intervals]
o L+e”

£ [ ! dw [5 intervals]
, 1+9x?

3. 'The diagram shows the graph of y = /1 + «°.
The region R is bounded by the curve, the
x- and y-axes and the line x = 2. YA

a) Use the trapezium rule with six ordinates to
obtain an approximation for the area of R,
giving your answer to a suitable degree
of accuracy.

b) Explain, with the aid of a sketch, whether the
approximation is an overestimate or

underestimate.

Numerical integration using the trapezium rule — Pure 2




4. The diagram shows the graph of y = xe™.

The region R is bounded by the curve, the x-axis

and the line x = 2.

a) Use the trapezium rule with 11 ordinates to obtain
an approximation for the area of R, giving your

answer to 3 significant figures.

b) Explain, with the aid of a sketch, whether the

approximation is an overestimate or
underestimate.

5. 'The diagram shows the graph of y =

The region R is bounded by the curve, the x-and

y-axes, and the line x = 2.

a) Use the trapezium rule with
i) two intervals and

ii) 10 intervals

to obtain approximations for
the area of R, giving your answers to
3 significant figures.

2
b) Calculate the exact value of J-
0 1+ x

on the accuracy of your estimates.

¥

0.5 y=xe*
0.4 4
0.3
0.2 E
0.1

.

02040608 1 12141618 2 ¥

Yi

1.2
™

T T T T T T >
0] 02040608 1 12141618 27X

dx and comment

[Summary exercise 5

)

1. Find the following indefinite integrals.

a) Je“'*dx b) J6 5

.
c) |sin4xdx d) J sin® 6x dx

3x—4

e) J\/ez" dx f) dex

~

g) |(sin x —2cos x)° dx

J3x+5

5
h) . i) |—cos{3x+Z)dx
3

2. Calculate the following definite integrals,

leaving your answers as exact values.

’ Sx ' 4
2) _Le dx b)J;4.x+2dx
c) J-Fxsecz(Zx—%jd_x

d) Jz’h—s sin 2x)* dx

Integration




g) J‘]’ﬂ(sinz W W g : 10. a) By writing x = 4x - 3x and 7x = 4x + 3x,
0

show that sin 3x sin4x = %(cos X —cos 7x).

2 15 : L
h) j —edx i) 3r 5 dx : b) Hence calculate J3 sin 3x sin 4x dx.
- -1 ®
. a
! EXAM-STHLE QUESTIONS . 11.a) Show that

: o ' in 2x — 3 cos 2x)* =5—3sin 4x + 4 cos 4x.
: 3. Find the area bounded by the graph of (sin 2x =3 cos 2x) SR R COsx

LY | i . H — . Ly
y=e™", the x- and y-axes, and the line x = 2. : b) Hence calculate J4 (sin2x — 3 cos 2x)” dx.
o]

4. Find the area bounded by the graph of

=_L1  thex-andy- dthelinex=1. : 2
y= , the x- and y-axes, and the line x = 1. : 1+ tan? @
2+x : 12. a) Show that — = = sec 2.

: - 1 tan’
¢ 5. A curve passes through the point (—, 0] s
: 4 ;’F[l + tan 9} 40

1—tan’ @

b) Hence calculatej

and its gradient function is sin’x. Find the
)

equation of the curve.

6. Find the area bounded by the graphs of : EXAM-STYLE QUESTIONS - PURE 2
: 1 1 : :
A AT the y-axis, and the - 13. The diagram shows the graph of y = /1 —sin x.
line x = 3. The region R is bounded by the curve, the
: 3

: x- and y-axes and the line x = =,
7. Find the area bounded by the graphs of : 2
= : (R is in two sections).

y =2+ e™, the y-axis, and

2x-7 : ¢
T 3 a) Use the trapezium rule with 7 ordinates to
e line x = 2. : _
obtain an approximation for the total area
8. Calculate the following improper integrals, : of R, giving your answer correct to
leaving your answers in terms of e where 2 decimal places.
appropriate. : § ; ;
pprop b) Explain, with the aid of a sketch, whether
r'w b . . . .
a) 2% dx : the approximation is an overestimate or
Jo underestimate.
{* oo E YA
b) efo,Sx dx 5 24
vt : 1.5
-1
c) Vet dx
of e
: EXAM-STHLE QUESTIONS : 2 s

9. 'Theline y =4e* between x =1and x =2
is rotated through 360° about the x-axis.
Find the volume of the solid obtained.

Summary exercise 5




: 14. The diagram shows the graph of y = xln x.
: The region R is bounded by the curve, the
x-axis, and the line x = 2.

3,

a) Explain why j xInxdx (if you were

0

able to calculate it) would not give the
area of R.

b) Calculate an estimate for the area of R
using the trapezium rule and intervals
of width 0.5.

Chapter summary

Integrating exponentials

® ea.\'+b = l ea'_\'er +c
a
1

Integrating functions of the form ———
ax+b

o [L=dx=In|x|+c
X

® j L dx :lln‘ax+b|+c
+b a

ax

Integrating standard trigonometric functions

® Isin (ax + b)dx = =L e (ax+b)+c¢
a
® fcos(ax—f—b)dx :ls'm(aer b)+c
a

® jsecz (ax +b)dx= Lian (ax+b)+c
a

15. Use the trapezium rule with five intervals to
find an approximation to

f I - 1] dx.

16. a) Find |2cos*(30)d6.

b) Find the exact value of

P
f as
53 2x+5

Integration




Integrating more trigonometric functions
» Standard trigonometrical relationships, such as identities and double angle formulae,
can be used to rearrange functions so that they are integrable.

The trapezium rule — Pure 2 only
o 'The trapezium rule is a method to calculate a numerical approximation to a definite integral:
The formula for the

trapezium rule will
not be provided.

b—a

n

B
A= %h{yo Ly Fo(p Lty )’,._1)} zj f(x) dx, where h =

RT3 Chapter summary




Numerical solution of equations

Computational mathematics is one of

the fastest growing employment areas for
mathematicians because of the ever-increasing
ability of computers to work quickly
through large quantities of calculations, and
the increasingly sophisticated algorithms
which are used. For example, numerical
weather prediction uses mathematical
models of the atmosphere and oceans to
predict the weather based on current climate
conditions. This chapter is an introduction
to some of the basic techniques which are
the foundation of that broad branch of
mathematics.

Objectives

o Locate approximately a root of an equation, by means of graphical considerations and/or

searching for a sign change.

o Understand the idea of, and use the notation for, a sequence of approximations which
converges to a root of an equation.

o Understand how a given simple iterative formula of the form x = F(x ) relates to

1
the equation being solved, and use a given iteration, or an iteration based on a given

rearrangement of an equation, to determine a root to a prescribed degree of accuracy.

Before you start
You should know how to: Skills check:

1. Substitute values into functions, and evaluate = Give your answers to 1 and 2 correct to 2
a function at a certain point. decimal places.

Iff(x) = —@, 1. Iff(x)= @, find
then f(1) = "'(32+ il g’ a) (1) b) (2) <) f(-2).

and £(2) = 7"“";*‘” 2.

e.g.




2. Substitute values into exponential, 2. Iff(x) =e "+ In(5x + 2), ind

logarithmic and trigonometric functions, a) f(1)
and evaluate these functions. b) f(2)
e.g. Iff(x)=e* + 2In(5x), c) f(-2)

then f(1) = e’ + 21n(5),
and f(2) = e® + 21n(10),
Also, f(-1) = e + 2In(-5), which is

undefined because In(—5) is undefined.

3. Be able to rearrange equations.

2x+1

e.g. Ify=3tan’x + l,expressxintermsofy. 3- Ify=e"" —3, express xin terms of y.

In mathematics, the final step in solving a problem is often to solve an equation.
As you learn more mathematics, you extend the range of equations to which you
can produce an exact solution using algebra. You have previously learned to solve:

linear equations, e.g. 3x + 7=5 = x = —%

quadratic equations of different types, e.g.
X=3x+2=0 = (x-1)(x—2)=0 = x=1or2

244/ 14422
3 4+ 2x—7=0 = x=-2% 64+84: 1i3 22

trigonometric equations, e.g. for 0 < 6 < 360°, 2sin@ =1 = sinf = % = #=30°150°.

In the earlier chapters of this book, you have learned how to solve equations
involving modulus, exponential, and logarithmic functions as well as harder
trigonometric equations. If you plan to study P3, you will learn how to

solve equations with complex numbers.

However, there are many types of equation that no-one has found an
algebraic method of solving exactly, and many more for which there are
methods of solving algebraically, but you have not yet studied them.
Being able to find approximate values of solutions to these equations is
_a valuable skill.



Note: Trial and improvement
(perhaps calling it ‘trial and improvement’). We want to treat this is sometimes called ‘trial and

method more formally now, and put a condition in. error’ but that misses a key
element of the process.

You have probably used the simplest of these methods already

The sign-change rule: if f(x) is continuous in an interval &t < x < fand
if f() and f(3) have different signs, then f(x) = 0 has at least one root
between o and f3.

Note: The condition that f(x) is continuous is important f(1) is negative and f(5) is positive so there must
because it means that the function cannot jump over be a root between 1 and 5 - in fact there are two -
the x-axis without creating a root. The wording ‘at least a (double) root where the graph touches the axis at
one’ is also important because there can be more than 2 and another where it cuts at 4, which creates
one root. Some illustrations are shown below. the change of sign.
YA Y
4 4

(1) is negative and f(3) is
positive so there must be 7 /
aroot between 1 and 3.

f(1) is negative and f(5) is positive so there
must be a root between 1 and 5 - in fact
there are three - so the sign actually changes
three times in the interval

g Note that in a case like this third

/ illustration, the choice of the

/ intermediate values will determine which
/ root we obtain: if we consider 1(2) instead

/ of 1(5) then we will find the root between

| ! ! jf 1 and 2, whereas if we considered f(3) or

i f(4) instead of f(1) we would find the root

T between 4 and 5.

4
fin

(=]
—
(
\

£

/
/
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If we have a pair of values giving an interval satisfying the sign-change rule,
we can then conduct a systematic process of narrowing the interval until we
identify a root correct to any degree of accuracy we want.

Numerical solution of equations




'The simplest of these processes to narrow the interval is called a decima
search, where first we identify a pair of integers between which the root lies,
followed by a pair of neighbouring values within 1 decimal place of each other
between which the root lies, followed by a pair of neighbouring values within

2 decimal places of each other between which the root lies, etc. If we keep going
with this process we will arrive at the value of the root to the required accuracy.

Example 1

“that if f(x) = x° — 4x + 5, then f(x) = 0 has a root between x = -3 and x = -2.
Find the root correct to 1 decimal place.

----------------------------------------------------------------------- PR T TR T T TR R

f(—3)=—27 +12 +5=-10

f(-2)=-8+8+5=5

By the sign-change rule, f has State this explicitly each time.
a root between x = -3 and x = -2.

The next step is to trial a value between —3 and -2. If we take —2.5 then we y
will know whether the root lies in the interval (=3, -2.5) or in (-2.5,-2). | JEF-ades ‘ P
| ! | - 8-

£(=2.5) = —0.625 => root lies in (~2.5, -2) JE N 76 B Y

f(—2.5) = —0.625, which is a very small negative _

number, and tells us that the root is likely to be close A _}J s '2 15 4 950 ‘?;5 7

to —2.5. The next trial should be —-2.4. ] 2
HEEEN
N— N — _‘_‘_ __6__
———1%
The sign of the function at the ' [
f(-2.4) = 0.776 = root lies 125 e —=—r— 10
~ mid-interval point (i.e. at —2.45) | | L4p]

in (~2.5, -2.4) will tell us whether —2.5 or —2.4

is closer to the root.
f(-2.45) = 0.0938... So

Just looking at the values
the root is 2.5 correct to

of the function at —2.5 and
1 decimal place. ' —2.4 is not enough.We
need to test the sign of the
function at —2.45.




Example 2

Show that if f(x) = xcosx — sinx + 1, then f(x) = 0 has a root between x = 4 and x = 5, where x is
in radians, and find the root correct to 2 decimal places.

---------------------------------------------------------------------------------------------------------------

f(4) = —0.857 77...
_ G ] : The next step is to trial a value between 4
£(5) =3.37723...  The sign-change rule implies f(x) S5, e e G Ve st e

has a root between x =4 and x =5. 50t is closer to 4 than to 5, s0 4.2 might be

f(4.2) = —0.187 51... = root lies in (4.2, 5) sensible for the next trial value.

Try 4.3: . _—

£(4.3) = 0,192 72... => root lies in (4.2, 4.3) The sign-change rule implies f has a root
(B SILE T oot Les G - between x = 4.2 and x = 4.3,

Try 4.25:

£(4.25) = —0.000 88... = root lies in (4.25,4.3) £(4.25) is extremely small, which suggests 4.25 is

close to the root. The next trial should be 4.26.
f(4.26) = 0.037 29... = root lies in (4.25, 4.26)

£(4.255) = 0.018 17... so the root is 4.25 correct to 2 decimal places.

B - y=xcosx -sinx 1 1

The actual root is 4.250 390... Using a spreadsheet
or programmable calculator allows roots of

1 55 equations like this to be obtained to any degree of
' accuracy available in the program. There are other
roots which are shown in the graph on the left.

Example 3

a) Verity by calculation that \J(x* +3) =2 — x has a root between x = 0 and x = 1.
b) Find the root correct to 1 decimal place.

---------------------------------------------------------------------------------------------------------------

a) We first need to write the equation in the form f(x) = 0 in order to be able to use the sign-

change rule, so let f(x) = x — 2 + +/(x” +3).

x f(x)
0 —0.26795... | The sign-change rule implies Rememberiasite ik
1 1 there is a root between 0 and 1.

b) [« f(x) A table of values like this, showing the
0.3 0.03983... The root is between 0 and 0.3 search process with the values, is often
0.2 —0.06564... | The root is between 0.2 and 0.3 the simplest way of keeping track of
0.25 | —0.01344... | The root is between 0.25 and 0.3 where we know the root to be located.

The root is 0.3 correct to 1 decimal place.

Numerical solution of equations



Example 4

a) Sketch the graphsof y = x* + 2 and y = i on the same set of axes.
b) Using your graphs, ¢xplain why there is only one root to the equation x” + 2x — 1 = 0.
a) L) b) The intersection of the graphs y = x* + 2 and
V= L is the point at which x> + 2 = L
X X

Rearranging gives x° + 2x — 1 = 0.

Since there is only one point of intersection
of the two graphs, there is only one root of
4+ 2x—1=0.

ari

1. Show thatif f(x) = x° — 5x” + 3x + 2 then f(x) = 0 has a root between x = 1
and x = 2 and find the root correct to 1 decimal place.

2. Show thatif f(x) = 2° — 3x — 3 then f(x) = 0 has a root between x = 3 and
x = 4 and find the root correct to 1 decimal place.

3. Show thatif f(x) = g— cos ' x, where x is in radians, then f(x) = O hasa

root between x = 0.5 and x = 1.0 and find the root correct to 1 decimal place.

4. Show thatiff(x) = % + % —tanx, where x is in radians, then f(x) = 0 has

a root between x = 0 and x = 1 and find the root correct to 1 decimal place.

5. a) Show thatiff(x) = x’ — 3x + 1 then f(x) = 0 has a root between x = 0
and x = 1 and find the root correct to 1 decimal place.

b) Show that there are two other roots of f{(x) = 0 which lie in the intervals (-2, -1)
and (1, 2), and find those roots correct to 1 decimal place.

6. Sketch the graphs of y = e and y = 7—3x on the same axes for values of x
between -2 and 3. Show that e = 7 — 3x has a root between x = 0and x = 1
and find the root correct to 2 decimal places.

7. Show that if f(x) = 5—x e then f(x) = 0 has a root between x =0 and x = 1
and find the root correct to 2 decimal places.

8. Show thatif f(x) = In(x”* + 3) — 2x + 5 then f(x) = 0 has a root between x = 3
and x = 4 and find the root correct to 2 decimal places.



Consider the sequence with nth term given by x, = 1—(0.1)""". The sequence
is 0, 0.9, 0.99, 0.999, 0.9999, 0.99999, ... Every term is getting bigger
in the sequence, but we are always subtracting a positive number from

We can puta
formal condition on

convergence by saying
1 so we know there is an upper limit of 1 on the terms in the sequence. that L is the limit of a

As n increases we can see that the sequence will get as close to sequence {x } i for any
positive value £, we can

find an integer N so that
Ix — Ll< gforevery
n>N.

1 as we require (and will stay close to it), and we say that the
sequence converges to 1.

The iterative relation x| = F(x ), together with an initial value x ,
defines a sequence. Ifthat sequence converges to a limit, then the hmlt
will be a solution to the equation x = F(x).

Example 5

a) Show that the equation cosec x =4 f%xz can be rearranged to x = SiI‘l_L[ 2 - ]
—X

b) Use the iterative relationship x, , = sin"l[ 2 - ], with x, = 0, to find four further

e

approximations x., x,, x,, x,, writing down 6 decimal places from your calculator.

¢) Determine the root of the equation correct to 3 s.f.
a) cosecx=4 —%xz b) x, =0
- 1 :8—x2 x,=0.252 680 ...
sinx 2 x,=0.254758 ...
_ x:sm-l[ 2 ] %, = 0254792 ...
— x,=0.254793 ...

Because the sequence appears to be converging fast, the root
¢) 'The rootis 0.255 (to 3 s.f.). is probably 0.254 79 to 5 s.1., but you will not be asked to make
judgements like this.

) A standard scientific calculator allows you to produce each
successive iterated value by a single key press once the function
has been set up:

e Enter the initial value and press ‘=’
e Enter the expression F(x ) using ‘Ans’ for each occurrence of x .
e Press ‘=" to generate x,, and again to generate x,, and so on.

You need to record a number of digits (often specified in the question) to
show your working but the calculator is using all the available accuracy when
L generating the next approximation.

Numerical solution of equations



If you have an equation f(x) = 0, you can rearrange into the form x = F(x) for some function F(x).

From here, you can define an iterative equation x | = F(x ) which will often converge to the root of

1

f(x) = 0.
Example 6
The graph of y = x” — 4x — 1 is shown.
y
a) Show that the equation x* — 4x — 1 = 0 can be rearranged to e
I s 2
==(x"—1).
x=-(-1 1

b) Use the iterative relationship x, ., = i(xf — 1), with x, =0, to find four ———+———

further approximations x,, x,, x,, x,, writing down 6 decimal places F -1

(where appropriate) from your calculator. =

c¢) Determine a root correct to 3 s.f. =
-4

d) Use the same iterative relationship with x = -2 -

to find values for x., x,, x,, x..

e) Comment on the behaviour of your sequence.

...............................................................................................................

a) x3—4x—1=0:>4x=x371:>x=i(x3—1)

x,=0
x,=-0.25

x, = -0.253906 ...
x,=-0.254092 ...
x, =-0254101 ...

c) The rootis —0.254, correct to 3 s.f.

d) x=-2
=775
=-3.097656 ...
-7.680870 ...

x].
x2
x3
x:l-
x, =-113.5347 ...

e) The sequence does not appear to be converging — we see from the graph that there is a root
just above -2, but the sequence is taking us further and further away from that root.

Note: You need to know that not all iterative relationships derived by rearranging

an equation into the form x = F(x) will converge. In Example 6, the three roots are
—1.861,—0.2541, and 2.115. Any initial value taken between —1.861 and 2.115 and
used in the iterative relationship we derived will converge to the middle root
(—0.2541). Any initial value below —1.861 or above 2.115 will diverge.



We can use an iterative method to find a root to a specified degree of accuracy.
The number of iterations required for this degree of accuracy will differ from

equation to equation, and will depend on the initial value we choose.

Example 7
a) Show that the equation xe* = 1 has a root between 0 and 1.
b) Show that the equation xe® = 1 can be rearranged into the forms i) x =e *andii) x = —Inx.
¢) Use the iterative relationships i) x,, =e "andii) x,,, =—Inx,
with x, = 0.6 in both cases, to find eight further approximations oy Xy Koy ennn Xy WEILITE

down 6 decimal places from your calculator.
a) Writing xe* = 1as xe* — 1 = 0, let f(x) = xe* — L.
Then f(0) = -1, f(1) =e — 1 = 1.718 ..., so by the sign-change rule there is a root between 0 and 1.

b) i) xe"z]:>x=ix=e"" ii) x¢* =1=>lnx+x=0=>x=-Inx

€

¢ i) x,,=e™ ii) x, = —ln *

x,=0.6 x,= 0.6

x, =0.548811 ... x, = 0.510825

x,=0.577635 ... x,=0.671726 ...

x,=0.561223 ... x, = 0.397903 ...

x,=0.570510 ... x,=0.921546 ...

x,=0.565236 ... x,=0.081702 ...

x, =0.568225 ... x,=2.504673 ...

x, =0.566529 ... x,=—-0.918158 ...

x,=0.567491 ... X, gives an error message

since we cannot take logs of a negative number.

1 In Example 5, the iteration x,., = sin"l[ 2 - ] converged very quickly,

8 - 'r?]

allowing the root to be confirmed to 3 decimal places after only

4 iterations, despite the first iteration (x, = 0) being some distance away
from the root. In Example 7, the iterative relationship x,,, = e ™ was

n+l

started much closer to the root than in Example 5, but after 8 iterations

Example 7 also

we are still not entirely sure of the root to 3 d.p. illustrates that the
iterative relationship
2 Consecutive iterations for x,,, = sin"l[ 2 - ] are alternately above and x ., =-Inx initially
8—x, generated a diverging

below the root (which is 0.567 1432 ...). As such, it is easier to conclude
what the root will be than where the sequence produced by the iterative
relationship approaches the root from one side only (as in Examples 5
and 6). We will look in the next section at how you can tell whether an
iterative relationship will alternate or approach from one side.

sequence, but after 9
iterations it required
an impossible
calculation and thus
stopped.

Numerical solution of equations




In all the examples so far, we have been given the equation to be solved
numerically. Questions can be set where you are asked to show that an
equation has to be satisfied in a given context.

Example 8

In the diagram on the right, O is the centre of a circle, and AB is a chord with
angle AOB = O radians.

'The smaller segment (shaded) created by the chord is one half of the
area of the larger segment.

a) Show that O satisfies the equation 360 — 3sinf = 2.

b) Show that this equation can be rearranged into the

form 0 = %:r + sinf.
¢) Using the iterative relation 8,,, = %ﬂ.’ +sinf,, with initial

value 0, = 2.6, determine the angle 6 correct to 2 decimal places.

Possssssssrsssssnnsansnns SesssssssssessnssnsRRsRnns sssssnn sessens ssssss esssssssnsssssnnas

then it is one third of the area of the full circle, i.e. %71’?’2.
Lo Li2ging = Lap?
2 3

2

(x%]z 30 — 3sinf =21

b) 39—3sm9=2n:>9=§x+sm9

a) The minor sector created by radii OA and OB has area %Qrz and the triangle OAB has

area %rg sinf. If the area of the minor segment is one half of the area of the larger segment,

The angle is 2.61 radians correct to 2 decimal places.

c) x =2.6 x, = 2.60989 ... Exam questions will not require this number of
x,=2.60139 ... x,=2.60870 ... iterations — the convergence is slow and the
x, =2.60241 ... x,=2.60782 ... root lies close to the border between 2.60 and
x,= 2.60317 ... X, = 2.60717 ... 2.61 radians.
x,=2.60373 ... x,=2.60668 ... Because the iterative sequence is alternating as
x,=2.60415 ... x,=2.60333 ... it moves towards the root, as soon as the lower
X,= 260445 . x,=2.60607 ... sequence exceeded 2.605, it is safe to conclude
x,, =2.60468 ... X, =2.60587 ... that the root will be 2.61 correct to 2 d.p.
x =2.60485...  x =2.60573...
x,=2.60497 ...  x, =2.60562...
X, =2.60506 ...




Example 9
The relationship for the golden ratio, x, can be described by the equation % =

x—1
T

a) Show that this equation can be rearranged into the form x = 3/x(x +1).
b) Use the iterative relationship x,., = 3/x, (x, + 1) with initial value x, = 1.6 to find four further
approximations to the golden ratio, showing at least 4 decimal places for each approximation.

¢) Give an approximation to the golden ratio correct to 2 decimal places.

a) L:xl—l (X2) > x=x-2 = L=x+x
X
Sz —xatl)=ax=Julx+1)
b) x =16
x,=1.6082 ...
x,= 16127 ...
x,=1.6151 ...
% = 1.6165.

c) The golden ratio is 1.62 correct to 2 decimal places.

ol

1. Find, and simplify, the equations that the following iterative relationships
provide roots for, assuming that the iterative sequences converge. (You do
not need to check whether or not the iterative sequences converge.)

a) ! b) x /X, +2 c)

erl = ntl =

Bk 3o,
= 3 = ]_['1(23(“) e) xrr+l = Cosxu + % f) x;H—l = l\‘O xné + 3

2. Find at least three possible rearrangements for each of the following equations

—2ay

xﬁi+l =e

d) xu+1
into a form x = F(x).

a) x'-3x+2=0 b) x —4x’+1=0 ¢ xX—-x"—-1=0
d x*-3x—-e =0 e e 3 =0 f) cotx +3-x*=0

3. For each iterative formula and given initial value, find values of A I and 2.
(giving the first 5 decimal places of each approximation).

\x, +2
a) x =—1 . x=05 b) x,., = % ;X =05

3

3+x, 34 x,
) x,,=e; x,=05 d) x,,=3-In2x%; % =175
TEe i : } 50
e) xu+l = COSJC“ + Z; J"1 = 1'1 f) J")H—l =4 ,7(.” +3; xl = 1'2

Numerical solution of equations



. a)

a) Show that the equation 3x* — x — 5 = 0 has a root between x = 1 and x = 2.
b) Show that the equation 3x? — x — 5 = 0 can be rearranged to x = [*F 5,
¢) Using an initial value of x, = 1.5 and the iterative relationship x,,, = x“;— 5,
find the root of 3x> — x — 5 = 0 that lies between 1 and 2, correct to 2 decimal places.
a) Show that the equation e —x*> — 5 = 0 has a root between x = 2 and x = 3.
b) Show that the equatione® — x*—=5=0canbe rearranged to x = In(x* + 5).
¢) Using an initial value of x, = 2.5 and the iterative relationship x,,, = In(x,* + 5),
find values of x,, x,, x, and x, (giving the first 5 decimal places of each approximation).
a) Show that the equation 0 = S?E + cosf has a root between 6 = 1.7 and 6= 1.8.
b) Using an initial value of 8, = 1.75 and the iterative relationship 6 ,, = 3?’Tﬁ-cos 0.,
find values of 6, 6., 8, and 6_ (giving the first 5 decimal places of each approximation).
c) Explain why you know that this iterative relationship will (eventually) converge.
The shaded segment of the circle has an area of 7cm?. A
a) Show that angle AOB = 68 (where 6 is in radians) satisfies the
equation 180 — 18sinf = 7. 2 =il
b) Use the iterative relationship 0, | = sin0, + % with initial 0
value 6, = 1.5 to find the angle 8 in radians correct to 2 decimal places.
Show that both x,,, = cosx, and x,,, = cos™ x, are iterative relationships that
provide a root to the equation x — cosx = 0 if the sequence converges.
b) Using x, = 0.75 as an initial value, show that one sequence diverges and the
other converges, and find the root correct to 2 decimal places.
a) Show that the equation x* — x* — 5 = 0 can be rearranged to each of the following forms.
i) = i) x=2X+2 i) x=4¥x’+5
el X
b) Using an initial value of x, = 1.7, show that the iterative relationships based

on forms (i) and (ii) do not converge, and use x,., = {/x,” +5 to find the

root correct to 2 decimal places.



Although you are not required to know conditions for convergence of an _
The Cambridge

iterative relationship, there are some simple principles about conditions for | |00 2"a709
convergence which may help you to feel confident that you know what is syllabus does not require
going on as a sequence progresses, giving you a feeling for how quickly an you to know conditions

iterative process may converge, and whether the terms will approach the root | for convergence of an

from one side or will be alternately above and below the root. iterative relationship,
although you do need to

know that an iteration
3ENO420 _ 119258 ... or 4.19258 ... tpay Bl [t:nanMerge,

We know that the equation x* — 3x — 5 = 0 can be solved using the quadratic
formula, with solutions x =

The equation x* — 3x — 5 = 0 can also be rearranged into various forms of

x = F(x), which are not normally helpful because to work out x on the left-hand
side we need a numerical value for x on the right-hand side. However,
rearranging equations into the form x = F(x) and creating an iterative

relationship x,,, = F(x,) will often produce a sequence of approximations

n+1

which converge to a root of x = F(x).

Example 10
Verify that the equation can be rearranged to x° — 3x — 5 = 0 in each case.
a) x=+/(3x+5) b) x:3x—:5 ) = xiS
a) x=(3x+5) b) x=3+2 ) x=—2
X X =3
= x"=3x+5 = x*=3x+5 =x(x-3)=5
=a —3x-5=0 = a3 5=40 =% —3x-5=0

Starting close to a particular root does not mean that the iterative

relationship will converge to that root (or indeed that it will converge
at all). Consider what happens if we form iterative relationships from
the three equations in Example 10 and take initial values of -1 and 4:

a) For iterative relationship x,,, = /(3x, +5), if we choose x, = 4 then
x converges to 4.19. If we choose x, = -1, we see that x_still converges
to 4.19.

45

3%,

b) TIterative relationship x,,, = produces the same behaviour as in

part (a) above.

A

c) For iterative relationship x,,, = ( 2 Bk choosing
x” N

either x, = 4 or x, = -1 results in x converging to -1.19.

Numerical solution of equations



In Example 6, we saw that initial values between the largest and smallest
roots gave sequences which converged to the middle root, while any
other initial value which was not an exact root itself generated a divergent
sequence. So we could start very close to a root and either move towards
a different root or not converge to any root at all.

In Example 7, there was an iterative relationship which produced an
undefined calculation.

Sketching the graphs of y = x and y = F(x) on the same axes helps us to
have some idea of what will happen in any iterative relationship.

If the gradient of F(x) close to the root is positive, then any
convergent sequence will approach the root from one side, and if it is
negative the sequence will alternate values above and below the root.

Generally, the smaller the modulus of the gradient, the faster the
convergence will be. For example, for small gradients it will take
fewer iterations to find the root to a given accuracy.

We will illustrate this by some examples. 7
' 4
Drawing the graphsof y=xand y = i(x3 =1) - 1 | 1 | | W I
y=x

(which we studied in Example 6) shows that the Even starting atx = 2,the —{———| ' ‘

gradient close to the middle root is small and Eepmnaiic iR, | |l :

s the root at -0.254 %] |

positive so we would expect the convergence L - ,
to be from one side (a ‘staircase diagram’) | | | L | ‘ | s
and fast. | E sl 1 i | *

‘ / y=1pd-1 |

. _ } -1 )

You will not be asked to produce staircase or cobweb A ‘

diagrams in examinations, but seeing them here may help
illuminate why the iterative process works in these cases.

2.61-
The iterative process in Example 8 was very
slow and alternated values above and the
root. The graphs show the functions

y=xand y = %:ﬂr + sinx, on a very expanded

scale in the neighbourhood of the root
(x = 2.61). In this neighbourhood, the gradient

of y = %z + sinx is negative and not numerically

R

T
0] 26 261 X

small (approximately —0.9). Thus, convergence 2.6

happens very slowly, and the graph of the iterations .

produces what is known as a ‘cobweb diagram.



Show that if f(x) = x* - 3a% + 4x - 1 then
f(x) = 0 has a root between x =0 and x =1
and find the root correct to 1 decimal place.

Show that if f(x) = 3x — 5x — 4 then

f(x) = 0 has a root between x = -1 and x =0
and another between x = 2 and x = 3. Find
the roots correct to 1 decimal place.

i) Show that if f(x) = x° + 4x? — 2x — 7 then
f{x) = 0 has a root between x = 1 and
x = 2 and find the root correct to
1 decimal place.

Show that there are two other roots in
the intervals (-5, —4) and (-2, -1) and
find the roots correct to 1 decimal place.

Show that if f(x) = 6 - x%¢* then f(x) = 0 has
a rool between x = 1 and x = 2 and find the
root correct to 1 decimal place.

Find the equation that each iterative
relationship provides a root for, if the
sequence converges. (You do not need to
check whether it does converge.)

. 1
) x,=——

) Fo 4+ 2x,
x: =]

5

ii) erl =

Find at least three possible rearrangements
of each equation into the form x = F(x).

i) x*-4x>+3=0

For each iterative formula and given initial

value, find values of x,, x, x,, and x, (giving the :

first 5 decimal places of each approximation).

. 1

l) er—l = ﬁ; xl = 0.5

. J2x +3

i) x,, = % B~ 0.5

ii) X°-3x242=0 :

- 10.

i) Show that the equation e* - 25> - 1=0
has a root between x = 2 and x = 3.

ii) Show that the equation e*- 2x*-1=0
can be rearranged to x = In(2x? + 1).

iii) Using an initial value of 2.85, and the

= 11'1(23;',3r + 1),

find the root correct to 2 decimal places.

iterative relationship x

n-+l

i) Show thatbothx  =tanx -1and
x,,, =tan™ (x + 1) are iterative
relationships that provide a root to the
equation x - tan x + 1 = 0 if the sequence

converges.
Using x, = 1 as an initial value, show
that one sequence diverges and the other
converges and find the root correct to

2 decimal places.

]

. 10cm
Ae.

The shaded segment of the circle has an area

of 19cm*.

i) Show that angle AOB = @ radians satisfies
the equation 500 - 50sin 8=19.

ii) Use the iterative relationship

6, =sind, + % with an initial value of

1.5 to find the angle in radians correct to
2 decimal places.

Numerical solution of equations



11.

12.

13.

i) By sketching a suitable pair of graphs,
show that the equation
cosec x =13 — x?,
where x is in radians, has a root in

1
the interval 0 < x < Z .

ii) Verity by calculation that this root
lies between 0.3 and 0.5.

iii) Show that this root also satisfies
the equation

. 1( 1 J
X =sin -
3—x"

iv) Use an iterative formula based on the

equation in part (iii) to determine the root
correct to 2 decimal places. Give the result
of each iteration to 4 decimal places.

The sequence of values given by the
iterative formula
2% 10
anrl = + 7
x

with initial value x, = 3, converges to o
i) Use this iterative formula to find
o correct to 2 decimal places, giving
the result of each iteration to
4 decimal places.

ii) State an equation satisfied by &z and
hence find the exact value of o
y
M
ol X

The diagram shows part of the curve
2

y= W and its maximum point M.
gt

The x-coordinate of M is denoted by m.
i) Find % and hence show that m

satisfies the equation x=1 + e™".

14.

ii) Show by calculation that m lies
between 0.7 and 0.8.

ii) Use an iterative formula based on the
equation in part (i) to find m correct to
3 decimal places. Give the result of each
iteration to 5 decimal places.

'The diagram shows a sector AOB of a circle
with centre O and radius r. The angle AOB
is ¢ radians, where 0 < ¢ < 7. The area of
triangle AOB is one third the area of the
sector.
i) Show that o satisfies the equation
x = 3sinx.
ii) Verify byzcalculatzl;on that o lies
between =z and 7.
iii) Show that, if a sequence of values
given by the iterative formula

X, = %(x“ +3sinx, )
converges, then it converges to a root
of the equation in part (i).

iv) Use this iterative formula, with initial
value x =23,t0 find o correct to
2 decimal places. Give the result of

each iteration to 4 decimal places.



Locating a root of an equation approximately using the sign-change rule or a graphical method

The sign-change rule:
If f(x) is continuous in an interval @ < x < Band if f(&) and f(8) have different signs, then
f(x) = 0 has at least one root between ¢ and .

The simplest process to narrow down an interval in which the root of an equation lies is

a decimal search. First we identify a pair of integers between which the root lies, followed
by a pair of neighbouring values within 1 decimal place, then within 2 decimal places,

etc. If we keep going with this process we will arrive at the value of the root to the required
accuracy.

Finding roots using iterative relationships

The iterative relation x,,,, = F(x, ), together with an initial value x, defines a sequence.

If that sequence converges to a limit, then the limit will be a solution to the equation

x = F(x).

If you have an equation f(x) = 0, you can rearrange it into the form x = F(x) for some function

F(x). From here, you can define an iterative equation x,,, = F(x, ) which will often converge

1+l

to a root of f(x) = 0. Use an iterative relationship and an initial value to produce further
approximations to a root.

We can use an iterative method to find a root to a specified degree of accuracy. The number
of iterations required for this degree of accuracy will differ from equation to equation, and
will depend on the value of the first iteration we choose.

Convergence behaviour of iterative functions

If the gradient of F(x) close to the root is positive, then any convergent sequence will
approach the root from one side, and if it is negative the sequence will alternate values
above and below the root.

Generally, the smaller the modulus of the gradient, the faster the convergence will be.

For example, for small gradients it will take fewer iterations to find the root to a given accuracy.

Numerical solution of equations



Maths in real-life

Nature of mathematics

The Fibonacci sequence is extremely simple to
define: it starts 1, 1 and then the next term is
generated by the sum of the previous two
terms — so the third is 2 = 1 + 1 and the fourth
is 3 =1 + 2. It continues infinitely:

1,1,2,3,5,8,13, 21, 34, 55, 89, 144, ...

Perhaps surprisingly, these numbers occur frequently

in nature. Exploring some geometry will help you see
why this happens, but here are some examples.

Flower heads with seeds often have an
arrangement that seems to optimise the
packing of seeds which are the same size — and
it looks as though there are spirals curving
both right and left from the centre.

The numbers of these spirals in each direction
are usually neighbouring Fibonacci numbers.

As a nautilus shell grows, the size of the
chambers follows the pattern of the Fibonacci
numbers. The shape of the nautilus shell
suggests that this is also an extremely efficient

way for growth to occur.

This satellite picture of a hurricane looks very like the
shape of the nautilus shell. The shape is built up by
adding squares on the new longest side, generating the
Fibonacci numbers. This movement seems to be the
way that hurricanes limit the energy losses from the
system.

Similar patterns appear on the grandest scale
imaginable - in the way that stars group together in
spiral galaxies in our universe.




Look at how the geometry grows: starting with
a square of side 1, add another above it of side 1.
Then to the right add a square of side 2, below a
square of side 3, left a square of side 5 and so on.
Moving round, getting larger each time, creates
the spiral shape seen in the nautilus shell, the
hurricane and the galaxies.

As the Fibonacci sequence continues, the ratio of
successive terms approaches the ‘golden ratio’ —
which was felt by the Ancient Greeks to be the
most pleasing on the eye and they used it a lot

in architecture - for example in the Parthenon
(shown here).

The golden ratio occurs when the short side (AB) of
a rectangle (ABCD) has unit length, and the long
side (AD) has length x, such that when you remove a

square (ABEF) whose sides have length 1, you are left

with a rectangle (CDFE) whose sides (lengths 1 and x - 1) As 9B

are in the same ratio as the sides in the original rectangle

(ABCD) were. The quadratic equation satisfied by the AB=AF=1

golden ratio comes from solving AD =x

1 x— £ E(FD=x-1)

=>1=x(x-1) D ¢
=2>x2-x-1=0

using the quadratic formula gives: Note that the second solution is discarded because
_ 1t N+4 1+\/_ it is negative. Also, some sources reference the

=1.618 (3d.p.) golden ratio as 0.61803 ... =1 = 1.618 ...

Maths in real-life




Further algebra

Real-world applications of algebra

include the use of binomial expansions

in computing, for example, the automatic
distribution of internet provider addresses.

Economists use binomial expansions to
help them make realistic predictions about
the way economies will behave in the next
few years. Architects and engineers also
use them in designing infrastructure and
in calculating the costs and time associated
with bringing their plans to realisation
while ensuring that projects are profitable.

Objectives

o Recall an appropriate form for expressing rational functions in partial fractions, and carry

out the decomposition, in cases where the denominator is no more complicated than
(ax+ b)(cx + d)(ex + f) or (ax + b)(cx + d)* or (ax + b)(cx® + d), and where the degree of the

numerator does not exceed that of the denominator.
o Use the expansion of (1 + x)", where n is a rational number and |x| < 1. (Finding a general
-1
term is not included, but adapting the standard series to expand e.g. (2 - %x) is included,

and so is determining the set of values of x for which the expansion is valid in such cases.)

Before you start

You should know how to: - Skills check:
1. Equate coefficients, For each of the following identities, find the
eg Given3x’- Bx+5=Ax*>+ 2x - C, values of A, B, and C.
find the values of A, B, and C. 1. A®-4x+9=x>+Bx-C
Coefficient of x* A =3 2. 3Ax*-2Bx-2=6x2+8x-2+C
Coemficientiofe fe -2 3. (1-A)-2x+5C=8x"—3Bx- 10
Comptanl; L 4. 122 +2Bx=4Ax+x-7C
e.g. Given2Ax’-9x+C-8=6x>+3Bx-7
5. 2Ax*-3Bx+6=6x*+4-2C

find the values of A, B, and C.

Coeflicientof x: 2A=6=>A=3

Coefficientof x: -9=3B =B =-3
136 Constant: C-8=-7=C=1




7.1 Partial fractions

We use the method of partial fractions to split a rational function into simpler
component parts. We choose which method to use by looking at the
denominator of the function.

Partial fractions type 1: Algebraic fractions with linear factors in the
denominator can be split into partial fractions in the following way:

1 __A N B
(x+p)x+q) (x+p) (x+9q)

Example 1
Express Ten in partial fractions.
x+3 A B = The denominator has two linear factors so we use
(x-2)(x+1) x-2 x+1 two fractions.
x+3=Alx+ 1)+ Blx-2) e Multiply each term by (x — 2)(x + 1).

Method 1: Ch iat \
= PRRERPPICPEIE We use the symbol = to mean it is true for all values of x.

values for x.

letx=2 “e= (Choose a value of x that makes one bracket = 0.
5~ AlR] 40 = A=§
Letx=-1 <~ (Choose a value of x that makes the other bracket = 0.

3 =04 B(=3) = B:——i—

T D
(x—2)(x+1) 3(x-2) 3(x+1)

Hence <@~ Substitute the values of A and B into the fractions.

Method 2: Expand the brackets and equate coeflicients.
x+3=A(x+ 1)+ B(x-2)

x+3=Ax+A+Bx-2B i Expand the brackets.
(1)x+ (3)=(A+ B)x + (A - 2B)

Hence A +B=1and A -2B=3 < Equate the coefficients of x and equate the constants.
Solving simultaneously gives A = % and B= -2

3
Y43 B 5 5 4—) Put the minus sign (-) before the second fraction.

x—2x+1) 3Ax-2) 3(x+1)

Hence

Further algebra




Example 2

Express % in partial fractions.

0% = A - B <
Q+x)(1-2x) 1+x 1-2x
x=A(l-2x) + B(1 +x) -
Letx=-1
T A D = A==

1

= — -
Let x 5

L-0+5(3) = B=1
2 2 3
Hence = L + i

X
A+x)1-2x) 30+x) 3(1—2%)

--------------- sssssssssssssssessssseREResnERREnnnnnny

Factorise the denominator into two linear factors.

Multiply each term by (1 + x)(1 — 2x).

When 1 —2x=0,x=%.
Substitute the values of A and B into the

fractions.

Note: You could also use the method of equating
coefficients.

Exercise 7.1A
Express the following in partial fractions.
x—4
(x-Dx-2)

2, — X
(x +D(x —4)

3x+5
X’ +2x-3

2x -1
x(2x +1)

257 4+ 17x + 21
(x +2)(x + 3)(x —3)

Partial fractions




Partial fractions type 2: Algebraic fractions with a repeated factor in the
denominator can be split into partial fractions in the following way:
1 - A . B
(x+p (x+p) (x+p)

Example 3
2
Express 3x_+23 in partial fractions.
x(x = 1)
3x 12 _A . B o C Separate the repeated factor (x — 1) into two
x—-1F x* x-1 (x—1) denominators.

32 +2=Ax -1+ Bx(x — 1) + Cx

Letx=10 &= This means B and C are eliminated.
2=A(-1)+0+0=>A=2

Letx=1
5=0+0+C = C=5 <~ This means A and B are eliminated.

Equating coefficients of x*

3=A+B=3=2+B = B=1 e Gubstitute for A =2in3=A +B.

ax 2 _2 el 2 Note: You could also equate coefficients of x or
x(x—1 x x-1 (x-1) equate the constant terms.
Example 4
Express 2x — in partial fractions.
(x + 3)°
2x __A B _ - Separate the repeated factor (x + 3)? into two
fxd3f  x+3 (x3) denominators.
2x=A(x+3)+B
Letx=-3 = This means A is eliminated.

—-6=B = B=-6
Instead, you could equate the constants,
Equating coefficients of x: ie.0=3A+B.

D A= A=
e 2 6

(354_3.)2=.xc+3—(x+3)2

Further algebra




Exercise 7.1B

Express the following in partial fractions.

& 2. 3
(x—2) x(3x — 1)
X 4 1
(x — (x — 2 T+ D(x 1)
1

5, ————
x(x*—2x +1)

Partial fractions type 3: Algebraic fractions with a quadratic factor in

the denominator can be split into partial fractions in the following way:
1 o A 4 Bx+C

(x+p)(x2+q):.X+p x'+q

Example 5

2
Express B e A partial fractions.

(x +1)(x* +2)

S R R R P RN R R R R RN

2x’—x+6 _ A Bx+C
(xLD(x*+2) x+1 242

2% -x+6=A0(2+2)+ (Bx+ C)(x + 1)
Letx=-1 < This means B and C are eliminated.

9=A3)+0 = A=3

<2 Put Bx + C as the numerator of x? + 2.

Equating coefficients of x*
2=d+8 = 2=3+8 @ Substitute for A=3in2=A + B.
= B=-1

Equating the constant terms:

6=24+C = 6=6+C < Substitute for A =3in6 =24 + C.

= C=0 Note: You could also equate coefficients of x, but it is
2 —x+6 _ 3 x simpler in this case to equate coefficients of x2 and
equate the constant terms.

(x+D)(x*+2) x+1 x*+2

140 Partial fractions




Example 6
2
Express S partial fractions.
Px—1)E —«
5x = 5x 4 A By @
= + <@~ Put Bx + C as the numerator of 3 — x2,

Cr—1CE-%) 2x-1 3 o
5x2-5x+4=A(3-x%)+ (Bx+ C)(2x—-1)
Let x :% < This means B and C are eliminated.

1011 1
Z-A(3~Z)+0 =5 =]

Equating coefficients of x*

5=-A+2B = 5=-1+28 <@ Substitute for A =1in5=-A + 2B.
= B=3

Equating coefficients of the constant terms:

4=34-C = 4=3-C < Substitute for A =3in4=34-C.

— (==l

5x* —5x + 4 1 p3x 1
Rx-DB-x*) 2x-1 3_x*

Note: You could also equate coefficients of x.

Exercise 7.1C

Express the following in partial fractions.

1-5x —2x° 5 201 — x?)
1-x)(x?+2) T X2+ xY)
132 +2x—13 5
3. ———— 4, —
(x+2)(2x"—=1) (x"+ 4)(x +1)
5 16x" —13x — 44 & 3 =
" (5-x)(4x=3) (1 -2x)(1+ xY)
. 7x — 4xt —22x%+x—5
T B-x)x-2) T (2x+1D(2+3x?)

Further algebra | L1



Partial fractions type 4: Improper algebraic fractions occur when a
polynomial of degree greater than or equal to n is divided by another
polynomial of degree n.

They can be split into partial fractions by first doing long division,
and then splitting the remainder into partial fractions using one of
the techniques discussed in types 1, 2, and 3:

X Bx +C

(x+ p)x+q) (x+p)x+q)

Example 7
X 5
(x —D(x+2)

R R R R N R R R R R

Express in partial fractions.

Method 1: Assigning values to x and equating coefficients.

We have a polynomial of degree 2 divided by another polynomial of degree 2, so the
leading term in the quotient will be a constant. Let this constant be A.

2
e i =A+ = + E <= There are now no improper fractions.

(x —D(x+2) x—1 x+2

= x+5=A(x - 1)(x+2) + B(x + 2) + C(x — 1) ««—— Multiply each term by (x — 1)(x + 2).
Letx=1: 5=0+B(3)+0 = Bz%

Letx=-2: 11=0+0+C(-3) = c=_%

Equating coeflicients of x: 1 = A < |t is easiesl to equate coefficients of x? first.
¥ —x+5 _ 5 11

(x-D(x+2) = 3x-1) 3x+2)

Method 2: Using long division, (x> - x + 5) + (x> + x — 2) = | remainder —2x + 7

2
X — = —
Thus ———< 2 el This is a type 1

(e = 1i(x = 7] 1+ (x — D(x + 2) partial fraction.

e td A - B
(x —Dx—2) 9 x-1 x72

Consider

2x+7=A(x+2)+B(x-1)

|

Letx = 1: 5=A3)+0 = A= Do not forget to put the constant term in the

/ answer.

Letx=-2: 11=0+B(-3) =-B= _31

LV¥]

‘v/ﬁ""
A — x5 4 5 11

S T R TR TS

Partial fractions



Example 8
Find the values of the constants A, B, C, and D such that
3 2
3x + 2x +6x+4:A+§+£)+ D
x(x+1) x x x+l1

S T T T P T T P TN PR

We have a polynomial of degree 3 which is divided by another polynomial of degree 3.
Using long division, (3x* + 2x* + 6x + 4) + (x* + x*) = 3 remainder — x*> + 6x + 4

3x3+2x2+6x+4_3 —x" 4+ 6x + 4

Hence =
xi(x ) x (x +1)
Thus A = 3.
=k D6 A B D
Consider —XZL ===t <&~ Repeated factor and linear factor
Xl %X x x+1

~x*+6x+4=Bx(x+ 1)+ C(x+ 1) + Dx?

Let x = —1: 3=D(1) = D=-3
Let x=0: 4=C(1) = C=4
Coeff 2% -1=B+D = B=2

Remember to state the values of A, B, C, and D at

@Sk S el the end of your working.

Exercise 7.1D

2

L .E £ A i tial fracti
- e gy i partial fractions,
x2
2. Express —— in partial fractions.
ag==—i]

3x" — 50" —3x — 40 . . .
3. Express X - 2 =% in partial fractions.
(x” +4)(x - 3)

—x’—8x —11
4. Express Lo — in partial fractions.
(x +3)
2
. ek C
5. TFind the values of the constants A, B, and C such that i A+ L + ;
xg = | x+2 x—2

Further algebra
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Exercise 7.1E

This exercise covers all four types of partial fractions that you have studied in this chapter so far.
Express the following in partial fractions.

x—1 x> —dx+3 2x —7F 11x + 3
(x + D(x +3) T (x+Dx+2) " (x=5) T =500+ x?)
x—8 3x*+5x + 3 7 1+ 3x° 8 2x°—3
(x +1)(x - 2) T x(x—3) T ox(x — 1) T ox(x +2)
9 #—1 1 x(x + 2) 8 +5x+3 x—3
C X4« " (x+3)(x - 3) Tk —2)(x + 1) T (e =1(x*+1)
13 X 14 41 2x*+2x + 3
(e - D(x -2 " xt-1 T +3)

7.2 Binomial expansions of the form (1 + x)" when n
is not a positive integer

aln —1) 2 n(n — 1)(n — 2)

XA+ X
2! 3!

In P1, you met the binomial expansion (1 +x)" =1+ nx +
where 1 is a positive integer.

We now consider the expansion when # is not necessarily a positive integer.

(1+x)"=1+nx+ =

M(nfl)szrn(n—l)(n—Z)xBJr
3!

where 1 is any integer or fraction and |x| < 1

In the case where 7 is not a positive integer, the binomial expansion of (1 + x)”
does not terminate (it forms an infinite series). In this case, we must restrict the

domain of the expansion to|x| < 1 in order for the infinite series to converge. Most

often we use this expansion to find an approximation to (1 + x)” up to a certain order of n.

Example 9

Expand (1 — 2x)* in ascending powers of x, up to and including the term in &%,
simplifying the coefficients.

R R N R P R R R R P R R N R TN

n =-2,and we
(1-2%)2=1+(=2)(-2%) + (=2)(-3) (=2x) + (=2)(=3)(-4) (=2x) + ... < yse —2x instead
2 %1 3= ondl of x.

=1+4x+ 12x*+32x° + ...
valid for [-2x| < 1 < Instead of Ix < 1 we write I-2x| < 1.

i.e. valid for —% < <% <@~ \Write this condition in the form shown.

IU:~B Binomial expansions of the form (1 + x)” when n is not a positive integer




Example 10

L
a) Expand (1 - %)3 in ascending powers of x, up to and including the term in x°.

b) Use your expansion to evaluate /0.999, giving your answer to 6 decimal places.

S R RN R PN PN R R R

BIE) e, GIEIE)

) (-3 B ) A

_£2€|<1,i.e.—2<x<2

\

—q1.1 1 2 :
3 o X 363«72 P +... provided

L 1
b) Let (1 = %)3 = 30.999 = (0.999) Do not forget to write this condition.
1-X-0.999
2
1-0.999=2=
2
x=0.002 “f——— \We use this value of x to find 3/0.999.

30.999 =1 - L (0.002) - L(0.002)° - > (0.002)*+... . Substitute x =0.002 into
6 36 648 your expansion in (a).

=1-0.000333333 - 0.000000111 - 0.000 000 02666
= 0.999 666 5293 = 0.999 667 to 6 d.p.

Example 11
il
Find the coeflicient of x° in the expansion of :
I==he
3 x . ) )
o (3 +x)(1 + 3x)" <%~ The denominator is the same as (1 + 3x)"".

(14397 = 1+ ()30 + 2D (3 4 EUEDE) 3y ...

=1-3x+97-27x +... <t~ Expand the denominator.

B+x)(1+3x)"'=CB+x)(1l -3x+9-27x"+...)

You do not need to fully expand the

Term in & is (3)(—=27x°) + (x)(9x%) = —=72x° : brackets.

The coeflicient of x* is —72. <——— Do not put x° in your answer.

Further algebra




Example 12

Find the first four terms in the expansion of (1 + 7).

p s e

R R R R R R R R e ssssssssnssnranee e

[t =l i-a)ars EICH oz CAICDCS o, : Use x2 instead of x
2x1

3x2x1 in the expansion.

=1-3x+6x"-10x°+...for-1<x<1

Exercise 7.2

1.

10.

Expand the following in ascending powers of x, up to and including the term
in x°, and simplify the coefficients. State the range of values of x for which
each expansion is valid.

a) (1-x)* b) (1 +3x)7° o Y1+x)
-3

d (1 + £) e) =~ f) —L

) 2 ) Lot ) (1-5x)
Find the first three terms in the expansion of in ascending powers of x.

1+x°
a) Find the first four terms in the expansion of 1 ! 7 in ascending powers of x.
i

b) Hence find the 50th term of this expansion.

4

a) Expand +/(1-2x) in ascending powers of x, up to and including the term in x".

b) Use your expansion to estimate /0.8, giving your answer to 4 decimal places.

1—x

sl

Find the first four terms in the expansion of (1 + 4x%)™.

Find the first three terms in the expansion of in ascending powers of x.

1+ 2x

E d
Xpan o

in ascending powers of x, up to and including the term in x°.

1
a) Expand (1 + x)? in ascending powers of x, up to and including the term in x°.
b) Use your expansion to estimate 4/ 1.08 , giving your answer to 4 decimal places.

The first three terms in the expansion of (1 + ax)" are 1 + 4x + 10x”.
a) Find the value of a and the value of .
b) Hence find the coeflicient of the term in x°.

1—3x
Expand — in ascending powers of x, up to and including the term in x*.
[

State the values of x for which the expansion is valid.

Binomial expansions of the form (1 + x)” when n is not a positive integer



11. The first three terms in the expansion of (1 + kx)" are 1 + 12x + 81x°.

a) Find the value of k and the value of n. b) Hence find the term in x*.
12. Find the first five terms in the expansion of L= 2‘2 in ascending powers of x.
1+ 2x

7.3 Binomial expansions of the form (a + x)” where n is not
a positive integer

We now consider the expansion when it is of the form (a + x)" where a # 1.

We want to use the binomial expansion:

(n—1) 2 nn-1)(n-2) ,

[ p— n
(1+x)"=1+nx+ - = P S

where 7 is any integer or fraction and |x| gl

However, when the first term in the bracket is not 1, we must first

factorise the expression into the form a” (1 + ﬁ) and then use the
a
binomial expansion of (1 + x)", so

(a+x)" = a"(l + f)ﬂ =a" [1 r n(f) " n(r;])(f)z + ]

Example 13
Express the following in the form a"(1 + x)".
a) (5-x) b) J(2—6x) ) —32
(4 + 2x)°
_3 ........... x_s ................................................................................
a) (5-x)7= [5(1 - g) <t~ Take out 5 and divide each term in the bracket by 5.
=3
= 5‘3(1 = ?) <———— Remember 5 is also to the power of -3.
-3
= L(]_ — E)
125 5
i :
b) (2-6x) = [2(1 - 32)]? It is helpful to use square brackets and round
! ; brackets.
= 22(1 - 3x)°
9] Lﬁ =32(4 + 2x) <t~ First get rid of the fraction.
(4 + 2x)
)
= 32[4(1 : lx)]
7
1 -2
= 32[4—2(1 + Ex) ]
1
- -2
=2(1+l)2 B
2

Further algebra




Example 14

Expand L

@+ x)

simplifying the coefficients.

in ascending powers of x, up to and including the term in x7,

i
ﬁ =(4+x) 2 <———— Rearrange to the form (a + b)".
+
- ! ) L
= [4(1 +i~ﬂ T4 (1 i i) i @ We want it to be in the form p(1 + g)".
T B
S 2 1 Va2
e
Now 1+£)2:1+(_1)(£)+#(£) _pall
( 1 2N\ 2wl L1 =73
2] -dps pa
8 128
Thus ——— :l(l — Lt 2y )
[(4 +x) 2 8 128
-1 1. .3
= et
for-4<x<4 <@~ Do not forget to write this condition.

Exercise 7.3
1. Express the following in the form a(1 + x)".

a) (25-50x)2  b) —2 o) 27 +4x)

(3-x)

2. Expand (2 - x)~° in ascending powers of x, up to and including the term in &%,
simplifying the coefficients.
3. Find the first three terms in the expansion of /(4 —x) in ascending powers of x.

1
+X

4. Find the coefficient of the term in »? in the expansion of

1
+ X

5. Find the first four terms in the expansion of in ascending powers of x.

2

1
(4 - x)
simplifying the coefficients.

6. a) Expand in ascending powers of x, up to and including the term in x°,

=

2=k
(4-x)"
7. Expand (1 + 3x) /(9 —x) in ascending powers of x, up to and including the term in x?,
simplifying the coefficients.

b) Hence find the coefficient of »” in the expansion of

Binomial expansions of the form (a + x)” where n is not a positive integer



8. Expand ——L— in ascending powers of x, up to and including the
(4 + 2x7)

term in x°, simplifying the coefficients.
9. The first three terms in the expansion of (2 + px)~* are i + 6x + gx.

a) Find the value of p and the value of g. b) Hence find the term in x°.

1
10. In the expansion of (4 — kx)? where k # 0, the coefficient of the term
in x is 8 times the coeflicient of the term in x°. Find the value of k.

7.4 Binomial expansions and partial fractions

We can use partial fractions to help us simplify the expansions of more
complex expressions.

Example 15
1

———— in partial fractions.
(x + D(x —1)°

a) Express

1 . ‘
— in ascending powers of x, up to and

b) Hence obtain the expansion of ———
(x+D(x-1)

including the term in x*.
a) In Exercise 7.1B question 4, you found that
1 S
(x+Dx—-1° 44x+1) 4x-1) 2(x—1)

b 1 =y S e (-1D(=2) , Expand each of the
) 4(x +1) 4( ) 4[ = 2Ll ] three terms separately.
=l-x+er.)=1-Lep Loy
4 4 4 4
for |x| <l,ie.for-1<x<1
We want to
Iy = e ) e o (1 - x)”
Hx—-1) 4 a 2x1 1
not (x — 1),
:—l(l+x+xz+...)=—l——1—x—lx2+...
4 4 4 4
for |fx]< l,iefor-1<x<1
L Lleayen - =L c2)en + E2C oy
251 2( 1)2(1 - x) —2[1+( 2)(=x) + = (—x)? +...]
:l[1+2x+3x1+...]=l+x+§x2+...
- - < Add the first three terms
for [—x| <l,jie.for-1<x<1 of each expansion.
Hence
—1—2-=—1—w—1~x+~1fx2~(ﬁl~lx~lx2)+l+x+§x2=1+x+2x2+...
(x+D(x—1> 4 4 4 4 4 4 2 2
for-1<x<1 = This is true for all the separate expansions.

Further algebra
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Example 16
—x+6

————— in partial fractions.
(x + (x> +2)

a) Express

Fx—x -6

m in ascending powers of x, up to

b) Hence obtain the expansion of

and including the term in x°.

I AR R AN R R R R R R R R R R R A R R R R R R R R A R R R A R R R R N A N R R R R R N A N R R R R R
a) See Example 5, where we showed that

2x°-x+6 _ 3  «x
(x+D(x*+2) x+1 x*+2

DEIES) o
Ix2x1

30 it _ (=1)(=2) (
b) ——=3(1+x) w3[1+( D+ S22 e
=31l-x+xX-x+...)=3-3x+3x*-3x+ ...

for|x{ <1l,jie.for-1<x<1

ey We want to expand a
(1 + _) bracket in the form (1 + x)".

X =24 =a) L ) = 2
x 2 2 2

2

[1 + (Hl)(x_g) + EDE2) (£)2+ (=1(=2)(-3) (x_2)3 " ] . Use% instead

_x

o 2 2x1 \2 Ix2x1 \2 ;
of x in the
expansion.

2 4 3

:i[l—":—+x—+. ]:ﬁ—x—+..

2 4 2 4

ik

for|*|< 1,ie. for0<x2<2,0or—2 <x <2

The overlapof -1 < x < 1

2_ 3
Hencezx—x,%=(3~3x+3x2ﬁ3xg+...)~(£~L+...)4— and —/2 <x <2 is
(x + (x> +2) 2 4 1 2aa

=3—%x+3x2—%x3+...,for—1<x<l

Exercise 7.4
3x+5

m in partial fractions.

1. a) Express
3x+5
(1 —2)(1 + 3x)

up to and including the term in x°.

b) Hence obtain the expansion of in ascending powers of x,

m in partial fractions.
+2x)(1 + x

b) Hence find the coefficient of x° in the expansion of

2. a) Express
xZ
(1+ 201+ x)°

Binomial expansions and partial fractions



x+2

3. Letf(x) = ——.
X =1

a) Express f(x) in partial fractions.
b) Hence obtain the expansion of f(x) in ascending powers of x, up to and
including the term in x°.
8 —1lx + 4x°
4. a) Express ST partial fractions.
(L—x)(2 ~x)
8 — 1lx + 4x°
b) Hence find the first three terms in the expansion of T in
— X =0

ascending powers of x, simplifying your answer.

5. a) Express in partial fractions.

M B
(1-x)x—-2)

b) Hence find the coefficient of 22 in the expansion of S
(1—x)(x—2)

6. a) Express in partial fractions.

1-x)(1+ x°

b) Hence, by working out all expansions to the term in x*, find the first
1

——————— in ascending powers of x.
- 201+ x%)

three terms in the expansion of

7. Letf(x)= ——*
(1I-2x)1+x7)
a) Express f(x) in partial fractions.

b) Hence obtain the expansion of f(x) in ascending powers of x, up to and
including the term in x>

[ Summary exercise 7 j
: : : 3x +11 : : g
1. Express in partial fractions e 5. Express in partial fractions
X —x -
: : . 2x -1 32+ 45x— 8x?
2. Express in partial fractions —————.
(x + D +1) 10(x + 3)(x —2)2x - 1)
2 3% 1 . . . 964 12x —5x°
3. Express in partial fractions e 6. Express in partial fractions ———.
(x=2)(x+1) (x +4)y(x—4)
3x+1 7x* +8x —11
4. Express in partial fractions 117 7. Express in partial fractions el
(x —1)(x +2) (x> —2)(x + 3)

Further algebra © /=0



- EXAM-

T4l

QUESTION

m

8. Find the values of the constants A, B, C, and
: D such that

3 2 _
5x° —1lx +Z’x 35A+E+ C i D
x(x —1)° X x-1

d Adumcitonfa)indefinechanfla) =2 <52, 13. Expand (2 - x)(ﬁ) in ascending powers

Obtain the expansion of f(x) in ascending
powers of x, as far as the term in x°, and
simplify your answer.

EXAM-STHLE QUESTION

10. a) Expand (1 - x)2 in ascending powers of
: x, up to and including the term in x°.

b) Use your expansion to estimate /0.9,

giving your answer to 4 decimal places.

(4 + 3x)

ascending powers of x, up to and including

11. Find the binomial expansion of —in

the term in x*. Simplify your answer.

Chapter summary
Partial fractions

12. a) Expand —

w17

: 2x +5
: 14.a) Express

t 15. f(x) =

ERAM-STYLE QUESTIONS

in ascending powers of
i }4 +2x

x, up to and including the term in x°.

b) Use your expansion to estimate the value
1
of 4.0272,

of x, up to and including the term in x°,
simplifying the coefficients.

————— in partial fractions.
1+ 2)(2 + x)

b) Hence obtain the expansion of
2x+ 5

1+x)2+x)

up to and including the term in %,

in ascending powers of x,

simplifying your answer.

Ix—x+4
(1+ x)(1 - x)*
a) Express f(x) in partial fractions.

b) Hence obtain the expansion of f(x)
in ascending powers of x, up to and
including the term in x2.

o Type 1: Algebraic fractions with linear factors in the denominator can be

split into partial fractions in the following way: P Pl =

A B
xX+p x+q

)(x +4)

o Type 2: Algebraic fractions with a repeated factor in the denominator can be

split into partial fractions in the following way:

1 ___A ,_B
(k- py  xtp [(x:pr

o Type 3: Algebraic fractions with a quadratic factor in the denominator can be

split into partial fractions in the following way:

Summary exercise 7

Bx+C
X

1 __A
(x+p)x*+q) x+p




¢ Type 4: Improper algebraic fractions occur when a polynomial of degree n or higher
is divided by another polynomial of degree n. They can be split into
partial fractions by first doing long division, and then splitting the remainder
into partial fractions using one of the techniques discussed in Types 1, 2, or 3:

x _ =3x="

) (x+2) | (z+)(x+2)

Binomial expansions of (1 + x)” where nis not a positive integer
n(n—1) n(n —1)(n — 2)
i i o
2! 3!

where # is any integer or fraction and |x| < 1.

e (l+x)"=1+nx+ X+

Binomial expansions of (@ + X)” where nis not a positive integer

o First put it in the form a"(l + ﬁ)".
a

Binomial expansion and partial fractions

o We can use partial fractions to help us simplify the expansions of
more complex expressions.

Further algebra
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Further integration

In recent years, many parts of the world
have been badly hit by severe flooding
caused by changing weather patterns.

It often happens when more rain falls

on already saturated ground, or rain falls
more quickly than it can be absorbed into
the ground and runs off to lower levels.
Differential equations and integration
techniques are important mathematical
tools employed in the search for ways to
predict when and where flooding might
occur and ways to lessen the effects of it.

Objectives
Integrate rational functions by means of decomposition into partial fractions (restricted to
the types of partial fractions specified in Chapter 7).

3 £l . 3 3 . . . l
Extend the idea of ‘reverse differentiation’ to include the integration of ——
X

+a*
kf'(x) or tan x.
(x

Recognise an integrand of the form , and integrate, for example,

2
X
Recognise when an integrand can usefully be regarded as a product, and use integration by

parts to integrate, for example, x sin 2x, x* e %, In x or x tan 'x.

Use a given substitution to simplify and evaluate either a definite or an indefinite integral.

Before you start
You should know how to: - Skills check:

1.

Decompose rational functions into partial 1. Express the following as partial fractions.
fractions, y ] , ' gy o2 w1 3x+1
.8 ~ = - (x=2)(x+1) —1’(x+2
€:gi @) (x=2)(x+1) 3(x=2) 3(x+1) (e=1) (x+2)
3042 2, 1 5 ¢) 7xX +8x—11
—_— =t i 2
b) x(x-—l)z X o] (x_l)z (" =2)(x+3)
Differentiate the logarithm of a function, 2. Find :—y when y = In/2x+1).
X
d x e"—3
.g. —[In(e* —3x)] =
e.g - -lIn(e" —3x)] = ——=



In Chapter 5 you extended integration to include a number of different types of
function which you had learned how to differentiate in Chapter 4, including
logarithms, exponentials, and trigonometric functions. In Chapter 4 you also learned
how to differentiate products and quotients, and techniques of implicit and parametric
differentiation. This chapter will extend the range of integrals you can tackle.

8.1 Integration using partial fractions

In section 7.1 you learned how to express four different types of function in
partial fractions. One of the applications of this is that almost all the partial
fraction forms are the sums of integrable functions where the initial rational
function is not directly integrable. The first four examples here use functions
which were split into partial fractions in Chapter 7, so we are looking at

the extra steps to be done when an integral is required.

To integrate difficult algebraic fractions, first look to see if you can split the

fraction into partial fractions, where each partial fraction is integrable.

Example 1 deals with fractions which have linear factors in the denominator.

Example 1
Fi d x+3
m J(r = rEmra
x+3 _ 5 2 :
=2l = 3(x—2) = Y <¢——————  From Example 1 in Chapter 7
x+3 - 5 _ 2 i Two terms which are each integrable as
(r —2)(x + 1) 3(x—2) 3(x+1) logarithmic functions
= %ln(x -2) —%ln(x +D)+c

Example 2 deals with fractions which have repeated linear factors in the denominator.

Example 2

SR B <t~ From Example 3 in Chapter 7

3x2_+2d_x = % g 1 5 5 dx . .
2 X x-1 (x—1y < Three terms which are each integrable
Integrate each term carefully, and include

=2lnx + In(x —-1) -
(x = l) the constant of integration.

Further integration




Example 3 deals with fractions which have a quadratic factor in the denominator.

Example 3
2
Find 2x —x+6
(x+l (x*+2)
2x° —x+6 S
(x +1)(x> +2) BTE T <+————  From Example 5 in Chapter 7
2x*—x+6 dre SN X )
m X = —1 "N x2s2 The first of these you already know how
1o integrate and the second you will meet
in section 8.3.
X
=3ln(x+1)—
( ) J[xz + 2

Example 4 deals with improper algebraic fractions.

Example 4
X —x+5 +5
(\c —1)(x+2)
¥ —x+5 gy 5 . 31 .
x—Dx+2) Ax—1 3(x+2) <t————— From Example 7 in Chapter 7
X x5 de=l(14+—5— 11 \gp < . .
Gl e ) < Three terms which are each integrable
=x+§ln(x—1)—%ln(x+2)+c
Example 5
By first expressing m in partial fractions, find f[m] dx.
1 - A . B ~ Orany standard technique to put into
(x—2fx-3) x-2 x-3 partial fractions

1=A(x-3)+B(x—-2); x=2=A=-1; x=3=B=1

1 _ ] 1
j[(t —2)(x — 3)]dx —J(x -2 * x —Sde

=-In(x-2) +In(x —3) +¢c <« Integrate each term.

x—3
= ln[k[ . ZD <«———— (Combine into a single logarithm.

Integration using partial fractions




Example 6
By first expressing ﬁ in partial fractions, find J[m] do.

- Separate the repeated factor x* into
two denominators.

4=Ax* + Bx(x —2) + C(x —2)

x=2=4=A4)+0=>A=1 <~ This means B and C are eliminated.

d=x* 4 Br* =2Bx +Cx—-2C =B =-1C==3 Substituting forA_means B gnd Ccan
be found by equating coefficients.

4 _ 1
x(x—2) x-2

[[Fam o[-t -2

L
X

Integrate each term; avoid using ‘¢’ as

=ln(x—-2)—Inx + =0 <—— constant of integration, having used
& ‘C” before.
= n(x — 2] L < Simplify the logarithmic term.
X X
Example 7
By first expressing ————— in partial fractions, ﬁndJ‘ M—_ dx.
x( 95 ) x(x” + 4)

---------------------------------------------------------------------------------------------------------------

2 < Put Bx + C as the numerator of x> + 4.

2x —4=A(x> +4) + (Bx + O)x

x=0=—4=Ad)+0=A =-1 “4——————— This means B and C are eliminated.

2x—4=-x"-44+Bx*+Cx=>B=1,C=2 -« Substituting for A means B and C can
be found by equating coefficients.

2x—4 =1 4 X + 2
x(x2+4) x (P +4)
oveits ] _ 1 x+2 ~ You will learn how to integrate the
f [x(xz + 4)]dx B J [_ x T (2 + 4)] s second term [ater in this chapter.

——-lnx+J'[ L }d.x
(x* +4)

Further integration




Example 8

Fmdﬂax — 4y’ —2de
i — 1)

3 2
3x2 4x 25A+§+£+ D
x(x-1) x (x—1)

<t—— There are now no improper fractions.

3x° —4x"-2= Ax’(x — 1)+ Bx(x — 1) +C(x — 1) + Dx* <«— Multiply each term by +*(x — 1),
x=0>-2=-C=C=2

x=1=23-4-2=-3=D=D=-3

3x° —4x” -2 = Ax’(x—1) + Bx(x—1) + 2(x —1) — 3’ - Substitute values for C and D.
= Ax’ —Ax’+ Bx’ —Bx +2x —2-3x"
Equate coefficients to find the last
(x*):A=3; (x*):—4=-3+B-3=B=2 < two constants; use the extra term
1o check.
Check coefficientof x:0=-B+2 = B=2

3 2
3 Ar-2 _,.9. .9 3
x(x—1) z x -1
3 2
fwdx: (3+;+3___ 3 ]dx
x (x—1) x (D
t3x+2lnxg3g31n(xM1)+c <t—— Integrate each term.
X
=3x— % S ln[( R ] Hic «+—— Combine the logarithmic terms.
s X —
Example 9
a8
1
Evaluate | ————dx
Ev a]ua&cJ; Gala=5
]
1 6
——dx=|-In(x - 2)+In(x -3 - i
J;(x~2)(x~3) ~ [ (x-2) (x )]4 Using Example 5

Combine into a single

=(~In4 + In3) - (~In2 + In1) = In> :
2 logarithm.

Integration using partial fractions
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cxe

o
.

rcise 8.1

By first expressing each rational expression using partial fractions, find

(" 7 2 7

2) [(x 3 - 1)]‘1’“ b) _J.[(x S (x + 7)}1": ) ﬂ(x T 5)(x = 2)]‘1’“
fi i , 3—x ) 5—3x

) {(2?{ +3)(x + S)de ©) J.[ 2+ 3x)(1 — 4x)]dx B ( (x—2)(3—2x de

" 4 o 5 _ 5x+5
8 Ji [(x+3)(x+5)]dx h) J‘-o.s((3+2-’f)(1—x)]dx 0 J((x 2)(x +3) )dx.

By first expressing each rational expression using partial fractions, find

1 dae b J‘ 1 d ( 8x +24 ) N
2) J[.r(x—l)zJ * ) [x(x%—])z} x ) J(x—i—l)(x—?;)z 4
5 4
9 J{x—Z)] € J.[(Zx—S)(1+x)]dx i J;(x3—4_r2+4x }dx.

By first expressing each improper fraction using partial fractions, find

X" —2x+6 2x —x+1

e) J{(X+1)(Y—2)de b) ((ac+1 )(x - 3)]

9 J'[x —3x+10]dx d) J‘[mx —26x+10}dx
X —x—6 a7 = 5%

ENE)
By first expressing %i in partial fractions, show that J [ 3\/5 de = ln(g).
x -3 25

L

L

x* =3

2 1 4y 1, (5
By first expressing 2% 94 iy partial fractions, show thatj A +9x+ 4 lgx =2 +—ln(—).
2x* +5x + 3 2x%° +5x +3 2 \12

Find the area bounded by the graph of y = the x-axis, the y-axis, and the line x = 1.

L
(x =3)(x =2)

X+ 3%

7, the x-axis, and the lines x = 2 and x = 3.
(x+2)(x — 1)2

Find the area bounded by the graph of y =

257 idag
(1-2x)(1 - )

, the x-axis, and the lines x = -3

Show that the area bounded by the graph of y =

and x = -2 isln(2.1).

Further integration ‘
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8.2 Integration of — 1 —
Xt

In section 4.6 you saw that if y =tan! x, then % = ;2 This means that
1+x

ﬂl ! 2)dx:tan‘lx+c
+x

Example 10

d
y=tan™ (5) Find an expression for =2,
a dx

S P T R PR T T PP R Ty

y= tan_l(i) = x=atany
a

1=y dy Differentiate with respect to
dx implicitly.
l=a(l+ taﬂzy)g‘z” “——— Use 1+tan?y=sec?
dx Y=ol
Rearranging gives
—
(1+ tan’y) dx
But = = tan y, so
a
1 _ ¥ x 1
G <~ Substitute — for tan y in ————
1+ [f-)z a 1+tany
a

Rearranging and simplifying:

; 1
Integration of ——
X"+



Example 11
y = tan' (bx). Find an expression for j_y
X
= 1
y=tan " (bx) = x =gtany
| = lseczyﬂ Differentiate with respect to v
b dx implicitly.
1 dy
L= 3(1 + taan’)a < Use1+tan?y=sec?y.
Rearranging:
e
(1+tan’y) dx
But bx = tany, so
b _d Substitute b for tan y in —
(1+(@x)?)  dx I+tan’y
Rearranging and simplifying:
dy b
dx 1+b’x’
You are given this
J{ - 1 - de = ltan‘l (EJ L formula in the formula
a +x° a a book.
You are not given this
1 1 . formula in the formula
J[H PERE )dx = gtan— (bx)+c book. It is useful if
~ you can remember it
accurately.
Example 12
; 1
Find j( - J dx.
x 25
il 1 i ;
f( = ]dx = —tan [—) e < Use a=5inthe standard result.
x= +25 5 5

Further integration = (&3]



Example 13

=)
Find Ji dx
x —8x+17

J.;dx = NN - dac Complete the square on the
x*—8x+17 (x—4)"+1 bottom.

=3tan '(x —4)+¢ <« Use the standard result.
Example 14

The diagram shows the graph of y =

16+ &2 i

i T T T T
5 4 B3 92 -1
= o

Calculate the exact value of the shaded area.

The shaded area is the area under the curve between x = 0 and x = 4.

4 1
So area=f [ ,de
a6

Note that the value of
y goes from 0.0625
il 1. o=\ 1, _ r 7 to around 0.03, so an
J. [16+ < }jx - [Ztan I(ZH = Z(tan '1-tan™0)= 5 ‘eyeball’ estimate of
’ : the shaded area is
around 0.2.

; 1
Integration of
X"+




Example 15

1
Findj —dx
1+9x

bssasssnse

ssssssssssnsss

1+9x> = 1+(3x)’

J‘ 1
1+9x°

srsscscsnass sssssssssssssssnsse

dx — %tan_l(&x) +c

ssssssas

SEsssssssssesEsBsIEEREERSEREEERRBERERERERTERERRTERE S

-+——— Use the standard result.

Example 16

1
FindJ‘—zdx

16+ 25x
5 2
16 + 25x> = 16{1+(Zx) ]
f;,ﬁ=if%ﬁ=ixitan-l 5. )4,
16+ 25x° 16 1+(5 ] 16 5 4

T T P R TP RN

It is helpful to get the integrand
into a standard form.

«+——— |se the standard result.

Simplify the expression.
Remember to include +c except
where there are limits.

Exercise 8.2

1. Find the following integrals.

a) J L ~dx
4+ x

Find the following integrals.

a) J . —dx
1+9x

Find the following integrals.

a) J L _dx
14 3x°

Find the following integrals.

a) J L _dx
449x°

b) f > dx
25+x

b)f L dx
1+16x"

b) f L _dx
1+ 8x

b) j 12 s
9+16x"

& f,g dx
x +81

c)f L dx
49x° +1

c)fj i
6x°+1

1
& f— e
49x~ + 81

Further integration
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5. Calculate the exact value of the following definite integrals.

) [ S b | ax
B L H3+x
6. Calculate the exact value of the following definite integrals.
a)Jledx b) 2 lsdx
o 1+4x ool E23%"
8.3 Integration of ki'(x)

f(x)

S f25+x
3

9 f[ = z}ix
EJ? 1+‘16x

In section 4.2 you saw that if y = In [f(x)] then

f(x)

= fix) . This means that

£(x)

ﬂkf (’C)jdx kn{f(x)) +

Example 17

o [

S R N R R R R R RN NN R RN RN

2% Ny = In(x* +2) +¢ < Since i(xZ +2)=
Xt dx
Example 18
Fifid 2x — % 6
(wc + D(x* + 2)
de 3ln(x +1) — X ldx <——— From Example 3
(x + )(x* +2) P42
=3ln(x +1) -%ln(.@c2 +2) +c¢ <4 Using the result from Example 17
Example 19
Find [[—"_ |dx
e +3
f[ = ]dx =din(e> +3) +c « Since S (e 43) = 2>
et 13 2

i kf’(x)
Integration of
g f(x)




Example 20

FlndJ‘(l+2xe )
x+e*

S R RN PR RN,

J‘ ﬁ dx=In(x +e*’2)+c -~ Sincei(:rc+e"?):‘l+2xe"E
x+e dx
Example 21
Find | tan2xdx
i Writing tan in this form allows you
ftan 2xdx = j[ 2' ]d_x «——— 1o view it as a logarithmic integral,
COSs 2X

since i(cos 2x) =-2sin 2x.
dx

= —%ln(cos 2x) +c¢

= lln(sec 2x)+ ¢ -« This is an optional simplification.
2
Example 22
1 X _ =X
Find j [ex e_x de
N e
1 ex _ e—x . = i d
& 1o dx:[ln(e it )Jg -— Sincea(ef+e-):ef—e-1
0
=(In(e + e™)) = (In(1 + 1)) Substitute the upper and lower
limits.
=In(e +e')—In2
= ]n[e i 1] <« Simplify the logarithmic function.
2e

Exercise 8.3
1. Find the following integrals.

b) cos.Zx e c) x—2 s
1 + sin2x X' —4x+3

Further integration




e’ X
B [ o [Fga 0 [eorvas
cos2x ! (ord 2x +5
8 _[ [1+sm2rjdx b) J;{l+e“]dx i J'[(x+3)x+2)]dx

2 x—1
) PindJ 4~
o X —2x+2

3. a) Show that di(sin2 x) = sin2x.
X

b) Hence find JM dx.

I
X +sin” x

4. a) Show that %{tanx + %ta.n3 x] = sec’ x.

b) Hence find J% sec* x dx.

5. a) Pindi(tanxfx).

X 2
x 2

b) Hence find n-
I tanx — x

2x —2x
6. Find Jl dx.
e+

e—Zx

tanx _ cosx — sinx

7. a) Show that

1+ tanx cosx +sinx’

41— tanx
b) Hence show that | "——— dx = 1o,
o 1+ tanx 2

—-x

8. a) Show that S
l+e" e* +1

b) Hence ﬁndJ )
1+

— dx, giving your answer correct to 3 decimal places.
<

. kf'(x)
Integration of —==
g f(x)




8.4 Integration by parts

In section 4.3 you met the product rule for differentiation,

Since integration is the reverse process to differentiation, it follows that
. . . dv du

tegrating both sid = — |dx + = |dx.
(integrating both sides) uv j(u ] % J(v j X

This can be rewritten to give the following rule.

Integration by parts
dv du
—_— d_x‘ —- —_— —_—
J[”dxj s f(v dkjdx

However, when you are faced with an integral that is not presented in

the form of the left-hand side, but is expressed as a product — something

like J(x e’*)dx - then you have to decide which to treat as u and which
as % The key to making this choice lies in the form of the second term
X

on the right: —J(V%j dx. Choose 1 which makes j[v%] dx integrable

directly, or at least simpler. So in the example choose u to be x and

then v is whatever satisfies L e, sov= Lo,
dx 2
Using integration by parts then gives:
(xe®)dx=x[ Le* |- [1x Le>*dx . - .
2 2 Differentiating x gives 1, so the second
term now is recognisable as a standard
_ % yer — Lo | o integral form.

Generally, if the integral is in the form fx” f(x) dx and f(x) is an exponential

or trigonometric function (sin or cos), then take u as x" because it will become
simpler when it is differentiated (you may need to do integration by parts
more than once) and the function f(x) does not get any more complicated
when it is integrated repeatedly.

Further integration




Example 23
Find | xcos3x dx.

R T P P R R R PR R AR TR

1 1.
3xdx = x—sin3x — || = s d 1
fxcos . S J[351n3dex = u=x d—:=c033x:>v:55|n3x

s 1
- 3x51113x * 9cos3x te - Don't forget the ‘+ ¢’ at the end here and be careful

with negatives with the sin and cos integrals.

Example 24
Find J.Jnczez’L dx.
fxzezxdx =x*Lle> - J(leezx]dx < u=x dv _ e =y = L
2 B 7o dx 2
1 x & : g : :
= Exzez = j(xez )dx <—— This needs integration by parts again.
. lxzez,\- _ xle“ -t (lez“)dx Be careful about the negative signs when
2 2 2 you use parts more than once.
=1l Lyere 1o, o
2 2 4
Example 25
Find Jf cos2x dx.

2 ol _ 1
fx cos2x dx = xzistx j[2x551n2x]dx e d_v e e < % sirid

dx

x’sin2x— j(xsian)dx <—— This needs integration by parts again.

b =

i i When integrating by parts more than

x’sin2x + x=cos2x — J.(—cos2xjdx <—— once involving sin and cos, you need
2 2 : ;

to be very careful with the negatives.

b |—

L2 ginox + Lxcos2x — Lsin2x + ¢
2 2 4

Integration by parts



All the above examples used x or x” as 1, the function to be differentiated to
provide a simpler integral on the right-hand side of the integration by parts
rule. There is one very important exception you need to look at now (and

remember). This is where In x appears in the integral; because di(ln x)=1
X X
but you do not know any function whose derivative is In x, you cannot

use % = |nx but should instead take ln x to be u.

Example 26
Find J(x Inx)dx.
f(xlnx)dx:(lxzjlnx~ j(lxz)(l)dx o R N
2 2 x T odx 2
_ (l xz]lnx _ J[lxj dx Now the second term on the right is
2 2 recognisable as a standard integral.

=[lx2jlnx Ly g
2 4

It is not immediately obvious that writing in the form of

Using the same process we can now find J(ln x) dx
a product will be helpful, but often in mathematics these

by thinking of In x as the product 1 x Inx. little devices prove the key step in a useful resuit.
Example 27
Find j(lnx) dx.
Jnax = etn— [ L)ax e Y oinny
X dx
=xlnx— ,[(l) dx Again the second term on the right is
recognisable as a standard integral.

=xlnx—x+c¢

Further integration




Definite integration which involves integration by parts requires attention

to detail in notation about the use of the limits. You can do the substitution
of limits into the integrated expression at the first opportunity, but you would
then be switching back and forth between evaluation at limits and more
integration.

The example below leaves all the evaluation at limits until after all the
integration is complete and then it is done all in one go.

Example 28
Find J(ﬁ Inx)dx.
1
YO S
J: (x” Inx) 4x nx_l . 4x = X u=Inux; T ===y
- e o
_ [lx:4]1nx 3 [lx’] 5 __ Now th_e second term on thg right is
|\ 4 1 J \4 recognisable as a standard integral.
_ . .
= [lf]lnx} = [lxﬂ Finish the integration processes.
|4 s,
=(41n2-0)- (1 _ L) Now substitute the limits into both terms
16 at the same time.
e
16

When doing integration, it is important to remember results you have
learned in other areas of mathematics. These will often help you to
integrate functions you might not think are integrable at first glance.

Example 29
Find J.(lnx3 )dx.

f(lnf )dx = I(B Inx)dx Simplify the logarithm.

=3(xlnx —x)+¢ = Using the result in Example 27

---------------------------------------------------------------------------------------------------------------




Example 30
Find j(2x3e* )dx

— X
= (x%* )AJ‘(er"')dx
=xe =8 -t dx

Now the second term is an exact integral.

The next example illustrates a surprising extension to the range of
functions which can be integrated by parts. In all the examples above,

we ended up with an integrable function on the right-hand side after
using integration by parts once or twice. However, if we try to integrate
e*sinx or similar then we will never find an integrable function, no matter

how many times we integrate by parts. Fortunately, there is a way around Remember: With an

this. Integrating by parts twice (whilst keeping the exponential and indefinite integral it is
trigonometric functions in the same role each time), we will end up important to remember
with —k times the expression on the left as the integral appearing on tointroduce the
the right-hand side, so by collecting like terms we can then evaluate constant of integration
the integral. Example 31 shows how this is done. atithieern.
Example 31
Find J(e” sinx)dx
f(ez" sinx)dx = %ez" sinx —j[%ez" cosx) dx =X u=sinx: W gy = Lo
~——_ dx 2
For the second integral use
d'P' 1 )
1 =COS X; — = —€
;e“smx ie”‘ COSX +f{iez“'(— sinx)jd.x de 2

After integrating by parts twice, the

—5 J(e s1nx)dx Loargin e Lot oo . |ast term is the same function as
4 2 4 the left-hand side.

Ky 4( 1 2« 1 ox .\..\"'\.
:J(ez Smx)dxz 5( zez sinx — 462 COS’C)H . Collect like terms.

= 1(2 iany — gt cosx) L . Remember the constant.

Further integration




Exercise 8.4

1.

Find the following integrals using integration by parts.

a) jfbc e* dx b) f3x sin 2x dx

c) J(2x + 1)e* dx d) f(x + 3)cos 3x dx

e) |xe*'dx f) j(xln 5x) dx

g) |xtan xdx

Evaluate the following definite integrals. Note that the first three are
integrating the same function as parts (a) to (c) of question 1.

1 5
a) j 4x e dx b) f 3x sin 2x dx
1] o]

d) IEx cos(%x)dx

Fis
f) J-Qx sin x dx

J j2(2x 315kl

e) wa4 In x dx

Find the following integrals using integration by parts twice.
a) fle%“ dx b) f3x2 cos 2x dx
c) j (2x2 + 1)e*dx d) J-Exze"‘ dx

e) j?xz sin x dx f) Ilf sin 2x dx

a iy
g) f xre* dx h) J‘4e3“ cos 2x dx
ki o]

Find the area bounded by the graph of y = x sin x, the x-axis, ¥

and the line x = % (as shown in the diagram).

y=xsinx

Integration by parts

Nlg 4

<¥



5. Find the area bounded by the graphs of y = x e, the x-axis,
and the line x = 2 (as shown in the diagram).

6. a) Find the area bounded by the graph of y = x cos 2x,

the x-axis, and the lines x = 0 and x = %

b) Tind the volume of the solid of revolution obtained
by rotating this region about the x-axis.

In P1 you met the chain rule for differentiation, o X E
dv  du dx
'The technique of integration by substitution is essentially
the reverse of the chain rule for differentiation.
3%

x+1

dx is not an integral that you can deal with

directly at the moment, but using the substitution #* = x + 1

transforms it into an integral that you can do.

In order to evaluate this we need to substitute for all the x terms and

You could write this integral as

+1) -1
Sju dx and create
Jx+1

two integrable terms.

also for dx (and, for definite integrals, we must also change the limits

to limits in the new variable).

It is sensible, at least at first, to write down everything in the integral in

terms of the new variable  (including the dx term), and then rewrite the

integral completely in one go.

Don’t ever write an integral which is a mix of x and u.
w=x+1
=x+1l=1; 3x=301’-1);

2u£=1:>2u ﬂdxzdx
dx dx

Substituting gives

3x 3w 1) du
dx =J 2u —dx
JJx+1 u dx

:Je(uz Tl

=2u’—6u+c

While this looks strange at the moment, when the
substitutions are made you will see why the technique works.

This is where the chain rule is used to replace %dx by du.

Further integration



Your original integral was in terms of x, so you need to express your
answer in terms of x:

28 —6u+c=2(x+1)Y —6Jx+1+¢

There is some simplification which could be done by using

So j\/"’L de=2(vx+1)—64Jx+1l +¢ «— (Wx+1) =(x+ 1)vx+1 but unless you are asked to show
Bafl a particular form for the answer, this is perfectly acceptable.

In this course, you are not expected to identify appropriate substitutions for yourself,
but you will probably be able to spot relationships between the integral form and the
substitution you are told to use that would allow you to do without that help later on.

Example 32
Find J\( 4— x> dx using the substitution x = 2 sin 8.

x=2sin8 = ’\/4—9(2 = .\/4—4 sin@ =2 cos 8 Only one expression here

40 49 You need this to be able to complete
1=2 cos QT =dx =2 cos Badx . the transformation of the integral to
* the new variable.

Substituting gives
Jde —J2 cos 0 % 2 cos Q%dx
=j4 cos* @ d9=J2(1 + cos 20)dé < Use the standard identity.
=20 +sin 20 +c =26 + 2sin Gcos O + ¢ Use the double angle relation.
=2 sin™ [%x} + %x m +c : Express in terms of the original variable.

When dealing with definite integrals, make sure you express the limits in

terms of the new variable, 1.



Example 33

2
Findj x+/5x — 2 dx using the substitution © = 5x - 2. Give your answer to 3 significant figures.
L

u=5x-2 = x== ;2;\153\? —2=u? < The two terms in the integral
x=l=u=3% x=2=>u=28 Change the limits.
fi= % = dx = % j— So we can complete the transformation
of the integral to the new variable
- u+2),3 1du
f XN5x —2 dx =J [ 5 )“2 e Substitute for the limits at the same time.
L 3
_ LJB( 3 %) ; Taking the common factor outside the
25), \u?+2u%)d ' integral simplifies things.
Ny
= ——l=su Eous ese are standard integral forms now.
s Th standard integral f
3
= 2 + 3+4 - ecause the limits are changed at the
1 256J' 64\/' 13 3 B the limit hanged at th
- start, the definite integral does not need
_ 1(1088\5 _ 353@): 3.5765... = 3.58 (35.f.) to be expressed in terms of x again.
23105 5
Example 34
FindJ. (l]n x) dx using the substitution x = e".
: X
1
x=e" = = e, Inx=u 1 Express both parts in terms of .

x=l=u=0 x=e=u=1l So we can complete the transformation

i e“% — di= e" du i of the integral to the new variable

Substituting gives ~__— Substitute for all terms and the limits.

e ]_ 1 d
f [;ll‘l xjd.x = J e " ue" d—u dx
' : * Simplify the function and use the chain

1 B g
=J wdu rule.
0

= [1”2 T Integrate as a function of u.

Evaluate the function at the limits.

Further integration



Example 35

Find J9 L — dx using the substitution x = 3 tan 6.
+x

x=3tanf = 9+ x*=9+9 tan’@ =9 sec’ @ «

1= 3sec29£ = dx = 3sec’8 ﬁdx

dx dx

s = / 3 sec? 04 4
9+ x° 9sec’ @ dx

-----------------------------------------------------------------

----------------------------------------------

Express in its simplest form.

So we can complete the transformation
of the integral to the new variable

Substitute for all terms.

Simplify the function and use the
chain rule.

= %sin@ = J5—4x? =5-5sin?0 = /5 cos

_5 e _\5 dé
—szosﬂazdx—TcosGde

1 do
—cosé? dx
J.~J5—4x J.\/gcosé 2

Substituting gives

_Jl do
3

—1o+¢
2

-----------------------------------------------------------------

1
= 59 +c Integrate as a function of 6.
— Lt (E) +c Express this in terms of the original
3 3 variable.
Example 36
Find f L - dx using the substitution x = % sin 8
5—4x

----------------------------------------------

Only the one expression here

S0 we can complete the transformation of
the integral to the new variable

Substitute for all terms.

Simplify the function and use the
chain rule.

Integrate as a function of 6.

Express in terms of the original variable.




Examples 32-36 are all functions that you could not integrate Apart from functions which are

without using a substitution or manipulating into a standard integrable directly (like Examples
form. Examples 37-39 show how substitutions can also help 37-39) you will always be given the
you see exactly what you are doing with some integrals which substitution to use in this course
you should recognise as exact derivatives of other functions. and in the examination.

Example 37

Find ;2 dx using the substitution « = 5x — 2.
(5x —2)

U=5x -2 = ;) = Lz As normal — express the function and dx
(5x —2)° wu in terms of 1.,
du 1 du
5 dx =-==dx
dx 5 dx
1 1 )1 du
=|[=|=—dx
(5x — 2) J‘(;f]5dx
= éJ' iz] du - This is a standard integral form now.
1
o
5u
R Express in terms of the original variable.
5(5x — 2)

Writing ﬁ as (5x — 2) 2 allows this integral to be done without a formal substitution.
Shi=

Example 38
Find J“‘cos 2x sin’ 2x dx using the substitution u = sin 2x.
(4]

--------------------------------------------------------------------------------------------------------------

u=sin2x = sin’2x =u’ Only the one expression here
%=0 = u=-0; x:% = u=1 < Change the limits.
du =2cos2x = l% dx = cos 2xdx This is the second part of the function to be
dx = integrated.
X 1
f4cos Fuiie D = j L ads . Substitution makes the roles of the multiplying
0 02 constants easier to see.
[30]
8 b ~ Now the integration and evaluation are almost
Sl trivial.
8 8

Further integration




For integrals like that in Example 38, you would be expected to notice that
cos 2x is the derivative of sin 2x and integrate this without being given a
formal substitution. If you find difficulty in getting the constant part of this
type of integral consistently right, then you might try using the substitution
method yourself.

Example 39

cos 2x
Fmdf dx using the substitution # = 1 + sin 2x.
1+sin2x

---------------------------------------------------------------------------------------------------------------

u=1+sin2x « Nothing more to do here

T - - ,
e B =uaia = = U - Calculate the limits for the new variable.
O R e R dx So we can complete the transformation of the

integral to the new variable

o (R0 R e I T Substituting throughout
e x —J: (_)53 e ubstituting throughou
1.5 1
= j (2_) du This is the standard logarithmic integral form.
1 U
1.5
= E In u} -- Integrate and evaluate at the limits.
i

=lnis—0=Ln1s5
2 2

f'
f(x)

without the formal substitution.

This integral was in the form and could have been integrated

1. Find these indefinite integrals using the substitutions given.

bx 2 3
a) d; 12=2x+1 b) (x I+x  dx; u=1+4°
IJZ.\‘H v

x=3sin0 d) ( X _dx; u=x+2

1
dx;
C) J\;‘Q’—f J Vx+2

2x
e) ! —dx; x= >tan @ f) Pe Fldy, u=e*+x
25+4x" 2 J +x



2. Evaluate the following definite integrals using the substitutions given.
Note that the first three are integrating the same function as
parts (a) to (c) of question 1.

L ir}
a) J 6X dw; w=2x+1 b) fx2J1+x3dx;u—1+f
1] 1]

V2x+1

dx; x=3sinf d)J. —X __dx; wu=1+2sinx

W1+ 2sinx

L
e) j(1+x)¢2x+x2dx; U=2x+x° f) 28 g =
0

o €+

g) Jgsecz xtan® xdx; wu=tanx h) J.\Eﬁlx sin(x?) dx; u = cosx?
o 4]

3
3. Findf _ using the substitution x = %
2 X —‘\/;

4. Using the substitution u = In x, find the area bounded by the graph of

4
y= %, the x-axis, and the linesx =1 and x=e.
7
5. Using the substitution u = 2x + 1, find the .
bounded by the graph of ¥ = ———, | »d= 1~
area bounded by the graph of ¥ e y m//
the x-axis, and the line x = 2 (as shown in the diagram). 0.5 1 /~/- i
/
0.5 1 15 2 X
YA o
6. Find the area bounded by the graph of 1004 _y=2x COS(JC] + g)
Y= 2% ms(x2 + E), the x-axis, and the lines
6 0.751
x=0andx= % (as shown in the diagram).
0.50
0.25
0.5 1\0 X

Further integration




[Summary exercise 8

1.

s BE¥

By first expressing each rational expression
using partial fractions, find

) [
) j (szt)?f+4)] .
o (e

o [(y)e
) j-";jf}dx

{AM-STHLE QUESTION
4 1 X .
Show that ———=—— S Using the
x(xP+4) x x4+4
substitution 1 = x> + 4, find dx.
x(x? +4)

Find the following integrals.

a) fx " b) dex
0 J d) féfZXCSde
9 Jx+9 ) jxﬁiodx
0 | [;‘;ij";xl W | ()
i) f

cos 3x

3x—2
307 —dx+ 7

_2x+3
(x+1)(x+2)

Find these integrals using integration by parts.

a) |xe*dx

b) ffix cos2x dx

Summary exercise 8

c) j(2x - 3)e"dx
d) f(ﬁ—x+3)cos 3x dx
e) J”xze“"1 dx

f) f (2 10, 2%) 4%

Find these integrals using the substitutions
given.

a ;
) J‘\Bx
b) x3\j4+x4 dx; w=4+x

o/

w=3x-1

( 1

o |—m—
J N25-16x7

dx; x =%sin9

r

J N2x+7
e) J‘(1-i—6xN.7«r+3x2 dx; w=x+3x
4]

d) de; u=2x+7

f) le +xd_x
Of.'+

u=e>+x°

I
g) j“secz xtan®xdx; wu=tanx
]

h) fEﬁlx c:os[x2 + %] do;u = sin(x2 + %)

: EXAM-STYLE QUESTIONS

: : 6. The diagram shows the area trapped between

the graphs of y = = and y = x. Show that

)
the graphs intersect at (0, 0) and (3, 3)

and that the area is % + [n4.



(Use the substitution 1 = x — 4 when dealing : 8. Calculate the exact value of

with the curve.) 1) 3

¥ : —  dx.

4 L X +6x+13
3 I

_ 9. Use the substitution u# =1+ 8 tanx to find the
24 exact value of
i_w'(l + 8tanx)
1] I | ; ! %) s
A e 0 Cos X
1 2 3 X
L q

dx.

7. Calculate the exact value of -
o 9+4x

Integration of rational functions

To integrate difficult algebraic fractions, first look to see if you can split
the fraction into partial fractions, where each partial fraction is integrable.

Integration of

=

x*+a

J( L 2}dx=tan‘lx+c
I+x

kf'(x)
f(x)

j [%)dx = kIn(f(x)) + ¢

Integration of

Integration by parts

j[u%] dc = uv —KV%} dx

Integration using substitution

Before making a variable substitution, first write down everything

in the integral in terms of the new variable, 1, (including the dx term)
and then rewrite the integral completely in one go.

When dealing with definite integrals, make sure you express

the limits in terms of the new variable, u.

For indefinite integrals if your original integral was in terms of x,
you need to express your answer also in terms of x.

Further integration



9 Vectors

The main navigation mechanism used by most
insects is called path integration. This involves a
zig-zag path which can be modelled as a series of
vectors. For example, biologists believe that ants can
measure direction and distance, which helps them
represent each step in a foraging path by a vector.
Neural processing enables them to add vectors as
they go along, so they always know how to get back
home quickly when they have found food, or if they

are attacked by a predator.

Objectives o
X —

o Use standard notations for vectors, i.e. [ ], xi+yj, | y |, xi+yj+ 7k, AB, a.
o5

z

e Carry out addition and subtraction of vectors and multiplication of a vector by a
scalar, and interpret these operations in geometrical terms.

o Calculate the magnitude of a vector, and use unit vectors, displacement vectors, and position
vectors.

o Understand the significance of all the symbols used when the equation of a straight line is
expressed in the form r=a + tb, and find the equation of a line, given sufficient information.

o Determine whether two lines are parallel, intersect or are skew;, and find the point of
intersection of two lines when it exists.

o Use formulae to calculate the scalar product of two vectors, and use scalar products in
problems involving lines and points.

Before you start
You should know how to: Skills check:

> : > —>

1. Find the vector AB which describes the 1. Find the vectors AB and BA in each case.
translation from a point A to a point B, : a) A(0,2) B(3,6)
e.g. if Ais the point (2, 1) and B is the point b) A(-3,1) B(0,0)

(5, 0), then AB =[j] s BA = [_ﬂ 9 A(-2,6) B(-3,4)

182




2. Add and subtract column vectors and
multiply a vector by a scalar,

es [j}[;} @
(O
{30

9.1 Vector notation

2. Calculate the following.

JRRSE IR
> )

[ A vector is a quantity which has both magnitude (size) and direction.

a
The vector [b} can be used to describe a displacement of a units in the

x-direction and b units in the y-direction.

A scalar is a quantity which has magnitude but no associated direction.

Distance is an example of a scalar.

%
In two dimensions a displacement can be represented as [ }
Y

Positive and negative are used to denote directions as in the

standard two-dimensional plane.

distance

X
The column vector [
Y

directions respectively.

] can be represented in the form xi + yj,

where i and j are unit vectors (vectors of length 1 unit) in the x and y i

X

In three dimensions a displacement can be represented as | y |.

The diagram shows a three-dimensional set of axes, x, y, and z.

Z

X

z

The column vector | y |can be represented as xi + yj + zk,

where i, j, and k are unit vectors in the x, y, and z directions respectively.

Vectors




3
For example, | 1 |can be represented as 3i + j - 2k.
-2

This vector means

3 units in the direction of the x axis,

1 unit in the direction of the y axis and
-2 units in the direction of the z axis

(or 2 units in the direction of the —z axis).

Example 1

a) Write down the displacement from A(2, 6) to B(5, 7) as a column vector.

b) Write down the displacement from P(2, 1, 3) to Q(7, 2, —1) //B(’S L

in terms of the unit vectors i, j, k. A2, 6)
a) AB’ - 5-2 _ 3 = Show the increase in both coordinates as
7—6 1 two positive components.

—
b EQ ST b S UL Sk = Sl = 4k‘f\ Show the decrease in the z-coordinate by

using a negative component.

Example 2

In the diagram, OABCDEFG is a cuboid with OA = 10cm, AB=6cm, OD = 5cm. G 0 F
The unit vectors i, j, k are in the directions OA, OC, OD respectively. D i - J
The point P is the mid-point_oEAB ariQ lies on GF such that GQ =4QF. ™ _‘I- e 'F') ==
Express each of the vectors OP and OQ in terms of i, j, k. 0T A

OP = OA + AP = 10i + 3§ + Ok = 10i + 3§ . 10units in x-direction, 3 units in y-direction
and 0 units in z-direction

—

0Q = 8i + 6j + 5k

e Go-2GF=%%10=8
5 5

Note: The x, y, and z axes are not always shown in exactly the same way with the
same orientations, but they are always perpendicular to one another.

Vector notation



A displacement vector represents a change in position.
For example, in the diagram the displacement from A to B is

B(6,1,5)

5 /

—>
AB=|-2|or5i-2j+k A(1,3,4)
1

A position vector describes the displacement from the origin to a point.
For example, in the diagram the position vector of P is

2
—
OP=|3|or2i+3j+k
1

x
A point with coordinates (x, y, z) has position vector | y | or xi + yj + zk.

z

If two points, A and B, have coordinates (xl, Yy Z1) and (xz, Yy za)
respectively, then
Xy =X
+ . .
AB=|y,—y |or(x,—x)i+ (y,—y)j+ (g, - z)k
|

Example 3
If A has coordinates A(3, —2, 4) and B has coordinates B(5, -3, 2), find as column vectors

—_—
a) ZE =|3-_2|=| More _commonly we think of AB as being the
coordinates of A subtracted from the coordinates of B.
2—4 =7
3-5 -2
_’

b) BA=|2--3|=| 1 <-———— Subtract the coordinates of B from the coordinates of A.

4 -2 2

— —>
Note: AB =—BA. This is true in every case.

Vectors




Example 4

The position vector of point A is 3i — j + 2k. - 8
—>
AB =2i +5j - 3k 3iw

Find the position vector of B. A

----------------------------------------------------- msssscsssssssesseses NN eRENsEsERRRREAIRRERORRERRERRTETEETY

—

Position vector of B= OB

—

OB=(3i+2i)+(~j+5j)+(2k*3k) T OB=0A+AB
=5i+4j -k

Exercise 9.1

1. Write down, using column vector notation, the displacement from

a) (1,5) to (3,4) b) (-3,4) to (2,-1)

¢ (1,0,3) to (50,8) d) (5,2,0) to (0,6,-3).
2. Write down, using unit vector notation, the displacement from

a) (3,1) to (6,0) b) (8,6) to (5,7)

o (1,0,-2) to (2,3,-1) d) (3,3,5) to (0,0,0).

3. The diagram shows a cube OABCDEFG of edge 6 cm.

— —> —> —
Express each of the vectors OE, OF, EG, and CE in terms of i, j, k.

4. 'The diagram shows a rectangle ABCD. a 5

A is the point (2, 5, 3), B is the point (4, 4, 4), and D is the point (5, 9, 1).

a) Find the coordinates of C.

b) Find the coordinates of the mid-point of CD.

¢) Find the column vector BE A B
5. Find, as column vectors, ZE and EZ in each of the following cases:

a) A(3,1,8) B(4, 3,2) b) A(-1,-1,0) B(2,0,-3)

¢ A(2,05,1.5) B(3,251) d) A(I, % —2) B % i 0).

—> >

6. Find, using unit vector notation, AB and BA in each of the following cases:
a) A(2,4,-7) B(3,5,-2) b) A(4,-2,8)  B(12,-6,1)
¢) A(-3,-3,-3) B(1,1,1) d) A(t+2,2t 1) B(t 1 1)
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7. The position vector of a point A is 6i + 2j -k and the position vector
of a point B is —2i + j + 2k. Find

— —>
a) BA b) AB.
x 5
8. 'The position vector of a point A is | y |. The position vector of a point Bis | 1 |.
3 z -3
o>
Given that AB=| 3 [, find the values of x, y, and z.
=5

9.2 The magnitude of a vector

The magnitude of a vector is the length of the line representing the vector.

>
It is denoted by |AB| and is sometimes called the modulus of the vector.

To calculate the magnitude of a vector we use Pythagoras’ theorem.

X
In two dimensions, the magnitude of vector { ] or xi +yj is given by {/x” + y*.
y

—
We write |AB| = /x” + 5.

%
In three dimensions, the magnitude of vector | y | or xi +yj + zk is given by \/x* + y* + 2°.
z

_’ 2
We write |AB| = 4/x’ +y* +2°.

Vectors are equal if they have the same direction and magnitude.

A negative vector has the same magnitude as the positive vector,

but the opposite direction.

A unit vector is a vector of magnitude 1. To find a unit vector we divide

the vector by zcs magnitude, so the unit vector in the direction of a vector Remember. i, j, k are

a is given by already unit vectors.

a|.

To multiply a vector by a scalar we multiply each component by the scalar.
Any vector obtained by multiplying another vector by a scalar will be
parallel to the original vector.

3 6
For example: 2| 4 |=| 8 |or 2(3i + 4j + 5k) = 6i + &j + 10k.
5 10

Vectors




6 3

8 | has the same direction as | 4 | but twice the magnitude (length). (z]
10 5 5
Parallel vectors are vectors which have the same or opposite direction. : /«/a
| Parallel vectors must be scalar multiples of each other. | 2a
Example 5 .
a) Find the magnitude of the vector | 4 |.
6 3
b) Hence write down a unit vector in the direction of | 4 |.
6
3
a) Magnitude of | 4 |= V/3* +4°+6° =61 <« Find the length of the vector.
6
3
b) Unit vector = 1 4 This is equivalent to dividing each
Jel - component of the vector by +/61.

Example 6

2 8
a) Find the value of k for which the vectors | -1 |and | —4 | are parallel.

6 k

St 3
b) Find the value of t for which the vectors| 4 |and | 4 |are equal.
3 -3t 9

bssssssssnssssnsnnsns sesssssssssssEanE sssasase sssssaesw D R R R Y PR R R R R

a) For the vectors to be parallel, they must be scalar multiples of each other.

8 3
—4 |=4| -1 <+————— Find the scalar multiple.
k 6
k=4x6=24 <———— Use the third component to find k.

b) For the vectors to be equal, all three components must be equal.

5+t=3 and 3-3f=9
f=-2 <t———— Equate each component.

The magnitude of a vector



Exercise 9.2

1.

Calculate the magnitude of 1 4 10
a) 5i+ 3 b) 2i-4j+5k o | -7 d) [ 9} e) | -5
0 10

Find a unit vector in the direction of

1 il
a) 2i-3j+k  b) |-1 o -i+2j—2k d) | 2|
1 -3
1
State which of the following vectors are parallel to | —4 |.
=y
2 3
a) | -8 b) %i . %j ~ %k d (=i d) p(-5i+20j - 30k)
-16 =21

Find the values of ¢ for which the following vectors are parallel.

=15 =20 2t 3t
a) i-2j+4kand0.5i - ¢+ 2k b) | 36 |and| 48 c) | —4f |and | —6t
21 c 5t ct

If the following pairs of vectors are equal, find the values of a, b, and c.
a) ai+bj+ckand3i-4j+k
b) (a-1)i+(b+2)j+ckand -bi+ (a-1)j+2ck
The points A, B, C, and D have position vectors i + j + k, 2i + 3j, 3i + 5j -2k,
and —j + k respectively.
a) Determine which of the following pairs of lines are parallel.
i) ABand CD ii) BCand CD iii) BC and AD
b) Determine which of the lines AB, BC, CD, and DA is longest.

The points A(-1, 0, 3), B(L, -2, 2), C(x, y, z), and D(-2, 4, 5) form a parallelogram.
a) Find the coordinates of C.
b) Find a unit vector in the direction of AD.

¢) Find a vector of magnitude 5 units which has the same direction as AB.

Vectors




9.3 Addition and subtraction of vectors:
a geometric approach

Consider three points A, B, and C.
—> —> —>
AB+ BC =AC

This is the triangle law of vector addition.

Alternatively, in the parallelogram ABCD
—> —>
AD =BC

—> —> —> — E
s0 AB + AD = AC where AC is the diagonal of the parallelogram

This is the parallelogram law of vector addition. 2 /A\lD

|
More generally, vector addition can be interpreted I L

' |
as moving from a start-point to an end-point by any route. |

\ c
For example, |
—> > —> > > —> "‘
AB+BC+CD + DE + EF=AF

Vector subtraction is also important.

For the vector triangle

Note: This explains why to
—
AB = A0 + OB find AB we u.se the posfupp
vector of B minus the position
=-a+b

vector of A. In practice this

—
means that to find AB we
subtract the coordinates of A
from the coordinates of B.

AB =b - a where a, b are the position vectors of A, B respectively.

Example 7

a) A isa point with coordinates (1, 0, 3) and B is a point with coordinates (3, -2, 6).
Find, using column vectors,
—
i} AB
ii) the position vector of the point C, which is the mid-point of AB.
b) OADB is a parallelogram.
Find the position vector of the point D.

¢) What do your answers to (a) and (b) tell you?

---------------------------------------------------------------------------------------------------------------

3 1 2

—>
a) i) AB=|-2 0|=|-2
6 3 3

b Continued on the next page
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—> —> —>
ii) OC=0A + AC

bUtACZ%ABz o B(3,-2,6)
3
2 C
— ! ! 2 _>—— A(1,0,3)
soOC=|0|+|-1|=| -1 0
3 2
2 2
— —> —>
b) OD =0A + AD B b
1 3
— —>
S AD = OB
3 6
0 A(1,0,3)
4
—
OD =| -2
9

—>  —>
¢) OD =20C so C is the mid-point of OD.
Therefore the diagonals of the parallelogram bisect each other.

Example 8
The points A, B, and C are such that
— —> —
OA =2i+6j + 3k, OB =i+2j+7k,andOC=4i+l4j - 5k
— e
Show that the vectors BA and AC are in the same direction and hence that A, B, C

lie on the same straight line.

BA = 0OA - OB
= (2i+6j+3k) - (i+2j+ 7k)
=i+4j-4k

—
. BA = position vector of A minus position vector of B

—_ —»> —>
AC=0C - OA
= (4i + 14j — 5k) - (2i + 6j + 3k)
=2i+8j- 8k

—
N AC = position vector of C minus position vector of A

e =
AC = 2BA so BA and AC are parallel.

— —>
But A lies on both BA and AC, so A, B, C lie on a straight line.

Vectors
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Exercise 9.3

1. Here are three vectors:

3 2 -1
r=|1 s=|0 t=|-2|
2 3 0
Find, as a single column vector,
a) r+s+t b) 2r+3s c) s—t
d) r+2s—t e) 3(t-2r) f) %(3r—s+t).

2. Two points A and B have position vectors a = (4i — 2j — 3k) and
b = (3i — 4j — k). Find the vector which has magnitude 6 and is in the
—

same direction as AB.
3. OABCD, shown in the diagram, is a square-based pyramid. z
A
a) Write each of the following vectors in terms of i, j, and k.
- > >
iy OA ii) oD iii) DO
—
b) Hence find the vector DA by using vector addition.

¢) Find each of these vectors in the form xi + yj + zk. )
— — —
i) OB ii) DB iii) CD
o
d) Find lcDl. )

4. Show that the points P, Q, and R, with position vectors | —1 |,
lie on a straight line. -8

—>
5. OA=3i-2j+k
—
OB =4i+j -2k
— —_—
Find the vectors OR and OQ such that
a) Ris the mid-point of AB
b) Q is the mid-point of RB.
6. OABCDEFG, shown in the diagram, is a prism.

The cross section OABC is a trapezium and is such that OC is
parallel to AB.

OC=6cm,0OA =4cm,AB=3cm, OE=2cm
a) Write each of these as a column vector.

— — —
i)y oC ii) OF iii) EF

- > —> —> —
b) Use FC = FE + EO + OC to write FC as a column vector.
c) Write each of these as a column vector.
— — — —
i) CG ii) FB i) OG iv) BE
—
d) Find a unit vector in the direction of AD.

Addition and subtraction of vectors: a geometric approach




7. 'The points P and Q have position vectors 65 =2i-j—-8kand
65 = 5i — j + 4k respectively.
The point X lies on PQ such that PX=2 PQ
Find the position vector of X, OX.

9.4 The vector equation of a straight line

We are familiar with writing the equation of a two-dimensional
straight line in one of the forms y = mix + corax + by = c.
These equations are said to be written in Cartesian form.

We can also write the equation of a line in vector form. The
vector equation of a line is a way of expressing the position
vector of any point on the line.

To find the vector equation of a line we need to know:

i) the position vector, say a, of any point A which lies
on the line,

ii) any vector, say b, which runs in the direction of the line.

'The position vector (r) of any point P on the line can then be
expressed in the form r = a + tb, where 1 is a scalar.

The vector equation of a straight line passing through a point

with position vector a and with direction vector b is
r=a+tb

where £ is a scalar.

Note: The direction vector b can
have any magnitude but it must
be parallel to the line.

The value of t will be positive
for points on one side of A and
negative for points on the other
side of A.

Example 9 -
a) Write down a vector equation for the straight line through
4 e
the point (3, 1) with direction vector ( 2]. .
b) Find a vector equation for the line through the points L(1, 2) .
and M(5, 3). -
3
a) a= . <~ This is the position vector of a point on the line.

P Continued on the next page
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b= 5 <t This gives the direction of the line.
3 4
A vector equation of the line is therefore r = il t 5
— 1 —>» (5
b) a=0L = 2 s Alternatively we could use OM = [3]
— 5 1 4
. = - — —4
b=LM= [3} — [2] = [1] < Alternativelyﬂv‘? cowse ML = (_J or any
; multiple of LM or ML .
A
M
L — 53
(L2
0 x
1 4 Remember: Include ‘r =’ as
A vector equation of the line is therefore r = il t | part of the equation.

We can also use vectors to write the equation of a line in three dimensions, as Example 10 shows.

Example 10
3 =l
Points A and B have position vectors | 1 |and | 5 |respectively.
—4 0

a) Find, in vector form, an equation of the straight line that passes through A and B.
b) Show that the point C(-12, 13, 8) lies on this line.

= 3 =5
—_— —
a) AB=| 5|—| 1|=| 4 <&~ AB =position vector of B minus position vector of A
0 —4 4 3 _5
A vector equation of the lineisr=| 1|+t 4
—4 4
3 =5 =12 For C to lie on the line there must be a value of ¢
b) 1|+t 4|=| 13 < Which, when substituted into the equation, gives
ok 4 8 the position vector of C.

P> Continued on the next page
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3-5i=-12
1+4ft=13 Write down an equation from each component.
—4+4t=8

Solving each equation gives f = 3. This shows that ¢ = 3 gives the position vector of C.

So C(—12, 13, 8) lies on the line that passes through A and B.

Note: We must show that the three equations are consistent and the same value of £
satisfies each equation. If this is not true, then the point does not lie on the line.

Example 11
A line has a vector equation given by r = (3i + j + k) + u(2i — j — k).
a) Show that this line intersects the x-axis.

b) The point P lies on this line and has coordinates (-5, a, b). Find the values of a and b.

a) If the line intersects the x-axis then there Ay pairrionHhese-akis fiasposition-vectar

will be a value of u which gives a position with y and z components equal o zero.
vector of the form ci + 0j + Ok.

Bi+j+k)+uRi-j-—k)=ci+0j+0k Rewrite the equation so we can compare the

i, j, and K components.
B+2wWi+ (1 -pwj+(1-wk=ci-0j-0k : ;

3+2u=c < Compare the i components.

I-pu=0sou=1 Compare the j and k components.

=3+2x1l=c
Substitute ¢ = 1 into 3 + 2 = c to find the

=c=5 value of c.

When p=1andc=5,r=5i-0j-0k
' Substitute ¢ = 1 and ¢ = 5 into the equation
so the point (5, 0, 0) lies on the of the line.

line and on the x-axis.

Therefore the line intersects

the x-axis. Equate the RHS of the equation of the line

b) (3i+j+K)+u(2i—j—k) =-5i + aj + bk with the position vector of P.

(B+2wi+ (1 -wj+ (0 -wk=-5i+aj+bk
3+2u=-5 Collect terms in i, j, and k and compare
' components to find the value of u.

p=-4
When pi = -4, Substitute . = —4 into the equation of the line.
r=0Ci+j+k)+(-4)2i-j-k)
=-5i+5j+ 5k
a=5b=5 State the values of @ and b.

Vectors |




Exercise 9.4

2 4
1. a) The vector equation of theline [ isr=| 3 |+ -5
-1 10

Write down the coordinates of the points A, B, and C on this line
which correspond to the following values of t.

i t=0 ii) =1 i) £= -3
b) The vector equation of the line [, is r = (2i + k) + u(-3i + 3j — 2k).

Write down the coordinates of the points P, Q, and R on this line
which correspond to the following values of p.

i) u=2 i) p:% jiii) =4
2. Intwo dimensions, find, using column vectors, a vector equation for
a) the line through the point (4, —1) in the direction of the vector [_3]
b) the line joining the points (2, 5) and (6, —1) g
c) the x-axis
d) the line joining the points with position vectors [i] and [:]
e) theline y = 3x
f) thelinex+y=1.
3. Inthree dimensions, find, using unit vectors, a vector equation for
a) the line through A(2, 1, 5) which is parallel to the vector —i —j + k
b) the line through B(3, 2, 4) which is parallel to CD where 0C = 6i - 2j+ 3k
and OD =51 + 2§ — k
c) the y-axis
d) the line joining the points (-3, 7 0) and (-5, 10, 2)
e) the line through the origin in the direction i +j + k

f) the line through the point with position vector —3i + 2j + 6k, in the direction of the z-axis.

4. Points A, B, and C have position vectors

1 -1
a=|2.l b=| 2|, c=
3 -1

Find

a) a vector equation for the line AB

b) a vector equation for the line through A parallel to BC

¢) avector equation for the line through the mid-point of AB and the mid-point of AC.

The vector equation of a straight line




5. Determine which of the points P(6, 7, —13), Q(-3, —11, 14), and R(0, —6, 5) lie

1 2
on the straight line with equationr=| -3 [+ | 4 |
2 —6

6. Points A and B have position vectors —2i + j and 4i + 4k.
a) Find an equation for the line that passes through A and B.

b) Show that this line does not intersect the x-axis.

2 1
7. Points A and B have position vectorsa=| -1 landb=| 1|
3 -1

a) Find an equation for the line AB.
b) Find the values of orand f if the point C(3, &, ) lies on the line AB.

8. a) Find the vector equation of the line joining the points (2, 3, 4) and (1, 4, 3).

b) Find the x- and y-coordinates on this line where the z-coordinate is 0.

9.5 Intersecting lines

In two dimensions, there are three possible relationships between two straight lines.

>~ =

They are co-incident
They intersect at a single point They are parallel (the same line)

Two lines intersect if they have one point in common.

"Two lines are parallel if they have the same direction but no point in common.
Two lines are coincident if they have the same direction and an infinite
number of points in common.

In three dimensions there is a fourth possible relationship between two lines.

Lines that are not parallel, do not intersect, and are not coincident are called
skew lines. They have different directions and no point in common.

For example, in the cuboid shown, the straight lines AC and GD are skew.

Vectors




Example 12

Two lines [, and [, are given by the vector equations

5 2 13 -3
r=| 1|+t 1|andr=|-6|+u| 4 |respectively.
=1l 5 2 1

Show that the lines intersect and find the position vector of the point of intersection.

...............................................................................................................

2 -3
We can see that either the lines must intersect, or else they are skew. Their directions, given by | 1 {and | 4 |,
5 1

are not the same and are not multiples of each other, so the lines are not parallel or coincident.

5 2 13 = ) )
For the lines to intersect there must be a value of
Litt1]=|-6(+m 4 t and a value of g which give the same position
=1 5 2 1 vector from each equation.

5+2t=13-3u (1)
l+t=-6+4u (2)
-1+5t=2+p (3)
Equation (1) — 2 x equation (2) gives
3=25-11u
u=2
Substituting u = 2 into equation (2):
l+t=-6+4x%x2
t=1

Solve two of the equations to find a pair of values
which satisfies those two equations.

Checking equation (3): Check that these values satisfy the third equation.
Whent=1landu=2,-1+5ft=4

2+u=4
If we solve two of the equations to get a value for

So this pair of values also satisfies the third S i e

equation and we have shown that the lines values do not satisfy the third equation, then the
intersect. lines do not intersect.
5 2 7 : i ; : :
Find the position vector of the point of intersection by
r=| L|+1fL]|=]2 substituting the value of  into the equation of /, (or
-1 E 4 alternatively the value of z into the equation of /).

If we were asked to find the coordinates of the
point of intersection, we would give the answer in the
form (7, 2, 4).




Example 13

Determine whether the following pairs of lines intersect. If they do not intersect, determine
whether they are parallel or skew.

4 2 5 —4

a) r=|5|+t-1|, r=|0|+yl 2
2 3 4 —6

3 2 5

b) r=|3 |+t 1], r=|1|+p -2
2 6 4

S R P T P PR N TR P R R AR R RN

a) By inspection we see that
—4 2 - = Firstly check to see if the lines are parallel.
2i=—Fi=1

6 3 It is easy to check whether the lines are
- parallel by looking at the direction vectors, so

The lines are therefore parallel and do not intersect. it can save work to do this first.

b) 'The lines are not parallel. < ~ Check the direction vectors in order to

For intersection conclude this.

4+3t=2+5u (1)
3+1t=1-2u (2)
1+2t=6+4u (3)

Equation (1) - 3 X equation (2) gives
~5=-1+11y

4
= _ _ Solve two of the equations for £ and p

11 <
values.

Substituting pt = —% into equation (1) :

433D g —t
11

=14
11
Checking equation (3):

14 17 Check 1o see if the values
1+2t=1+2x% — * " found also satisfy the third
6+4u=6+4x7i=@ equation.

11 11
1+2t#6+4u

There are no values which satisfy all three equations, so there
is no point in common for these two lines.

The lines are not parallel so the lines must be skew.

Vectors




Exercise 9.5

1. State whether the following pairs of lines are parallel or not.
You may assume that the lines are not coincident.

2 -1 3 4
a) r=|-5(+f] 3| r=|-6|+ul -12
3 2 5 -8
-1 3 4 1.5
b) r=| 3[+¢t|8|, r=|-7|+ul 4
1 6 —4
0 1 2 0
c) r=|0|+s| 1|, r=|1|+¢3
1 -3 0 5
-3 2 1 1
d) r=|2|+s{1|, r=| 2|+y -1
1 1 —5 3
e) r=(2i+Kk)+t(-3i+3j-2Kk), r = (=5i —j + 2K) + u(6i + 5§ + 2K)
f) r=(i—-j+2k)+1(2i+5 -k), r = (2i—2j +4k) + u(2i - 5j + k)

g) r=(5+29)i+(1+5)j+(-1+55)k, r=(13-4Ni+(-6-20j+(2-100k
h) r=(s- Di+(2s—1j+Gs+ 1)k, r=(l—%s)i+(1—3)j+(3—%s)k

2. Ineach case determine whether the two lines intersect and find the coordinates
of any points of intersection.

2 1 5 2
a) r=|1|+t 1|, r=| 2|+ul0
0 -2 -1 L
1 -1 2 3
b) r=|2|+t 5| r=(-1|+pl-2
0 2 5 6

¢) r=(2i+3j+5k)+s(4i—j+3k), r=(4i+7j+2k)+(2i-2j+3k)
d) r=6si+(2-35)j+(-3-9)k, r=(—4+20i+(6+0j—- 4+ Dk

Intersecting lines




3. Find the position vector of the common point for each of the following
pairs of lines.

1 2 2 -1
a) r=|1|+t -1} r=|1{+pu
0 0 0 0

b) r=Qi-j+k) +sBi+j), r=(-i+j+k)+u(-3i+2j)

4. Points A, B, C, and D have position vectors 2i + 3j, 3i + 2j, 4i + 6j, and
9i + 6j respectively. Find the position vector of the point of intersection
of lines AB and CD.

5. Points P, Q, R, and S have coordinates (2, 0, 1), (-1, 3, -1), (-5, -1, 2),
and (1, 4, 4) respectively. Show that the lines PQ and RS are skew.

6. Two lines have equations r = (3i + 2j — k) + #(2i — 3j + 2k) and
r=(—-i+j+k)+ u(i+2j+ ck). Find the value of ¢ for which the
lines intersect and find the coordinates of the point of intersection.

5 -1 7 1
7. Show that the twolinesr=|7 |+t 3 |andr=| 1|+u| -3

are coincident. 1 2 -3 -2

9.6 Scalar products

The scalar product (sometimes called the dot product) of two vectors a and

b is written as a-b and is equal to lal x [b] x cos@ where Ois the angle between
aandb.

i """‘"-—ﬁ;=‘____,_ a-b = lal [bl cos 6

We often do not know the angle between two vectors, sa it is not convenient
to work out the scalar product by using the result above.

There is a simpler way to calculate the scalar product.

In the vector triangle shown, c=b - a.

Suppose the two vectors a and b may be written in column vector form.

a, b,
Leta=|a, |b=|0, |
a b

3 3

Vectors
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b

c=b-a=|b,—a,

L T4

b, —a,
= (b, - a)?+ (b, - a)*+ (b, - a)?
=b2+a?*-2ab +br+a’-2ab +b?+a’-2ab
=al+a’+al+b?+b +b?-2ab +ab, +ab)
= lal’ + [bl" - 2(ab, +ab,+ab,)
From the cosine rule

Ic:|2 = |a|2 + |b|2 — 2lal|blcos @

Comparing the results we have a-b = |a| [blcos® = ab +ab, +apb,.

a, bl

ab=ab +ab,+ab

Jb,wherea=|a, ,b=|b,

& ba

We now have two ways of calculating the scalar product.

Example 14 5 .
e - e
Vectors OA and OB are given by OA = | —1 |and OB = | —4 |.

2 =5

— —>
Calculate the scalar product OA - OB.

R R T R R P R R R AR NN

—_— —
OA-OB=(3x6)+(-1x-4)+(2x-5) < Usingab +ab,+ab,
=N

Example 15

The position vectors of points A and B relative to an origin O are given by a = 2i + pj + 3k

and b = 3i — j + pk, where p is a constant.

Calculate a-b.

ab=02x3)+(px-1)+(Bxp) < Usingab, +ab,+a,b,
=2p+6

We can use the two ways of calculating a scalar product to provide a method
for calculating the angle between two vectors.

a-b =|al|blcos @ = ab +ab,+apb,

ab +a,b, +a.b,
[al[b]

cosf =

Scalar products




A special case exists when a b, + ab, + a,b, =0
cos@=0
0=90°

This is an important result.

Ifab +ab,+ab,=0then6=90° and if 0 =90° thena b, + ab, + ab, =0 Note: Two vectors
are perpendicular if
their scalar product
Or is zero,

If a:b = 0 then a is perpendicular to b, and if a is perpendicular to b then a:b =0

Example 16 | 5
Find the angle between the two vectors | =1 |and | 1 |.
1 4

ab +a,b, +ab,

cosf = TalTb] <« Use the standard result.
1x2 1l 1x4
- (DR P I () < Substitute the values.
JE D+ (2 41+ 4
=
V321
0=51.0°(1d.p.) < Give angle answers in degrees to 1 decimal place.
Example 17

a) Find the value of p if the vectors pi — 3k and 2i + j + 5k are perpendicular.
b) Show that the vectors gi — j + kand i + (g + 1)j + k are perpendicular.

a) The vectors are perpendicular if the scalar product=0 <—— b +ab, +ab,=0

(px2)+(0x1)+(-3x5)=0

2p-15=0 <«t——————  Simplify and solve the equation.
p=13
b) Scalar product=(gx 1)+ (-1 x(g+ 1))+ (1 x1) «—— Useab=ab, +ab,+ab.,
=q-gqg-1+1=0
Therefore the vectors are perpendicular. <« Write your conclusion.

Note: This means that the two vectors are
perpendicular whatever the value of g is.

Vectors




Example 18
Prove that the linesr, = (2t + 1)i+ (1 - )j + (1 - kandr,= (3 + p)i — Qu +1)j + (4u + 2)k
are perpendicular.

---------------------------------------------------------------------------------------------------------------

The equations of the lines can be written as
r=i+j+k+t(2i-j-k) <~ \\rite each equation in the form r = a + tb.
r,=3i-j+2k+ u(i-2j+4k)

But (2i - j — k)-(i — 2j + 4k)
=(2x1)+(-1x-2)+(-1x4) <l Find the scalar product of the direction vectors.

=
=0 Note: These two lines are perpendicular
The scalar product is 0 so the lines are perpendicular. but happen to be skew.
Exercise 9.6
1. Find the angle between the following pairs of vectors.
a) i+j+k i+3j+2k b) 2i+j-3k -i+2j-3k
Q) 2i+5j-2k i+4j+1lk d) i+2k j+k
e 2i+j-k i-2j+k f) i—j+2k —2i+2j-4k
2. Find the angle between the following pairs of vectors.
3) (o 2 3 1 6 P 2p
a) | -1, |0 b) |5], |-1 o (2], | -1 d) |2p]|, 4p
4 4 0 0 3 -2 5p 10p
3. Find which of the following vectors are perpendicular to each other.
a = 3i + 6j b=i-3j-4k c=7i+4j+5k d=4i-2j+5k

4. Tind the value of p for which the vectors i — 2j + kand 3i + 4j + pk
are perpendicular to each other.

5. The position vectors of the points A and B, relative to origin O, are given by

3 2
— —>
OA=|2|andOB=|k |
0 0
Find the value of k so that
— — —>  —>
a) OA and OB are perpendicular b) OA and OB are parallel.

6. Find the angles in the triangle ABC where the coordinates of A, B, and C are
(l) 0) ]-)’ (2) 2a _2)) and (_3: 0) _5)'

2 3 7 2
7. Show thatthelinesr=|1 |+t 6 |andr=| 21 |+ u| —1 |are
4 -2 3 0

perpendicular and skew.
Scalar products




9.7 The angle between two straight lines

a, b,

In section 9.6 we learned how to find the angle between two vectors a =| a, |[and b=| b,

ab +a,b, +a.b, a, b,
[al[b]

We now use this result to find the angle between two lines.

using the result cos@ =

The angle between two straight lines is defined as the angle between
their direction vectors.

Example 19
2 5 6 1
Two lines have equationsr = |0 [+ 3 |andr=| 7 |+py| 5|
1 -1 =il — 5

Find the acute angle between the two lines.

---------------------------------------------------------------------------------------------------------------

5 1
3 |and | —5 | give the directions of the lines.
-1 -3
5x1 3x -5 —1x -3
cosf = Gl lan-n) L 1a S <~ Use the standard result to find cos 6.

NF P o

=-0.2 ¢ A ntlegatwe cosine results in an obtuse
angle.

6 =101.5° (to 1 d.p.)
Acute angle between these lines = 180 - 101.5°

—78.5° (1 d.p) -« This is the acute angle required.

Note that it can be shown that these two lines do not intersect. The angle between
two skew lines is, nevertheless, still defined as the angle between their directions.

Exercise 9.7
1. Find the acute angle between the two straight lines.

5 2 13 -
a) r=| 1|+¢1]} r=|—6|+ul 4
-1 5 2 1

Vectors




1 -2 1 1:5
b) r=|2|+s -1}, r=| 0|+t 4
0 3 -1 3
1 =2 2
c) r=|5+¢t2], r=| 3|+ul -1
1 4

d) r=s(i-j+k), r=(4i+j)+ti+2j+3k)

e r=(i-j+k)+t(i-j+k), r=pui-3j+k)

2. Show that the following two lines are perpendicular.

2 =2 6 -11
r=|-1|+A| 4 |andr=| 1|+up| 3 Hint: Show that 0(2,2, 6)
ab +ab,+ab =0
6 5 -1 —2
3. A square-based pyramid OABCD is shown in the diagram. C(0,4,0)5% -~ 4----2 B(4,4,0)

Find the angles between the following lines. /
a) ODand AD b) CDand AD c¢) OBand BD 0(0,0,0) A(4,0,0)

9.8 The distance from a point to a line

The distance from a point to a line is defined as the shortest distance, that
is, the distance along a direction perpendicular to the line.

Let Q be the foot of the perpendicular from the point P to the line /, which
has equation r=a + tb.

To find the distance from point P to line , the coordinates of Q are found
by using the fact that PQ is perpendicular to I. The direction vector from

P to any point on the line can be found in terms of £, then the scalar
product between this vector and the direction of I can be equated to
0 in order to find the value of f for point Q, the foot of the perpendicular from P to the line.

This value of # can then be substituted into r = a + tb to find the position vector of Q and, hence, the
distance PQ.

This process is demonstrated in Example 20.

The distance from a point to a line




Example 20

Find the distance of the point P(3, 3, 1) from the line  whose equationisr=| 3 |+ 2|

0 —4
I
A
0
d\\
P(3,3,1)
Any point on the line, say Q, has position vector
4+t
q=| 3+2¢t | . Fiqd the gengral position vector of a
point on the line.
—4t
1
The direction of Iis| 2
_4

For Q to be the foot of the perpendicular from P to the line,

1
—
PQ:| 2|=0
4
—alrfy (3 —7rt
0 3408 -4 R >
ButPQ=q-p=|3+2f |=3|=| 2t Find PQ in terms of .
—4t 1 —4t -1
—7+t 1
—> —>
2t || 2|=0 <t Substitute for PQ in PQ.| 2 |=0.
—4t-1)| 4 —4
(-7+O)x1+@2Hx2+(-4t—-1)x(-4)=0
=7 +t+4t+16t+4=0 -« Calculate the value of .
1
-

P Continued on the next page
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88
48
— 2 1 s
ERG= et S == 2 < Substitute for £in PQ.
7 =11
1 11
e —1 -
7 7
PQ= %\/(_48)2 T2+ (1) = ‘*2;129 <« Calculate the length of PQ.

Note: If we want to find the position vector or coordinates of @, we can substitute
-4+t

t= % intoq = 3+2t
—4t

Exercise 9.8

1. The line [ passes through the points A(3, -1, 2) and B(2, 0, 2).
a) Find a vector equation for L

b) Cis the paint (9, 1, —6). Find the coordinates of the point D on I such
that CD is perpendicular to L.

¢) Calculate the length of CD.

2. Find the length of the perpendicular from the origin to the following lines.
a) r=i+j+k+12i+2j-k)

2 3
b) r=| 1 [+t 4
) -5

3. Find the distance from the point (3, -1, =2) to the line
r=(—4i + 3j) + (i + 2j — 4K).

4. Find the length of the perpendicular from the point with position vector
3i + 2j — 6k to the line r = #(2i — j + 2k).

The distance from a point to a line




The unit vectors i, j, and k are in the directions
OC, OE, and OA respectively.

5. In the diagram, OABCDEFG is a cuboid. 2
Point G has coordinates (4, 5, 2). E.

a) Tind a vector equation for the line CF. ' 5

b) Find the shortest distance from 4
point D to the line CF.

: c
6. Pisthe point (2, -1, 6). Q is the point (3, -2, 7).
a) Find a vector equation for the line PQ.
R is the point (-1, 2, 3).
b) Show that the line OR is perpendicular to the line PQ.
¢) Find the distance from the point P to the line OR.
[Summary exercise 9 J
) 7. Find a column vector which is perpendicular
1. Find the magnitude of the vector | -1 |. 1 3
-9 to both of the vectors | 3 |and | -1
2. Find the value of k if the vectors ki + 4j and -1 -1
~21++ G e parallel. ! EXAM-STHLE DUESTIONS
3. The sum of the vectors 3i + 2j — 4k, 8. OABCDEFG is a cube with edge 5cm.

pi-5j+ 3k and 61 - 2j+7kis 100~ gj+6k- © ) Eind in terms of i, j, and k

Find the values of p and 4. " = =
i) OF ii) AG.
4. 'The two vectors (a - 1)i + (b + 2)j and
i 2 ( ) .( )i b) Find the angle between the diagonals OF
—bi + (a - 1)j are equal. Find the values of
and AG.
aand b.
. G F
5. TFind the unit vector which is in the direction - |
of the vector 2i — j + 2k. be £
6. Express, in column vector form, the vector : 3
which has magnitude 10 and which has the : i .
; P T Vi
same directionas| 0 | 0] A

—4

Vectors




‘o,

The position vectors of two points A and B

relative to an origin Qarei+jandi+j+ J2k. :

Find angle AOB.

10. Column vectors v, v, v,are such that

Z EXAM-STHYLE QL

11

£ 15,

13.

2v1—v2+v3=0.

4 1
v, = -1 v,= 0
1 -2

Find the unit vector in the direction of v..

:TTI i*’i

The diagram shows trlangle ABC in which
the position vectors of A, B and C with
respect to O are given by OA =2i—-j+2k,

> >
OB =3i+3j-kand OC = -2i +j - 4k.
Find the angles of the triangle.
A
A
el / \
P / e L B

\.-"f —

c
The quadrilateral A
OABCshowninthe |

\ not drawn

diagram is such that / | 10 scale
e /
OA =i+j+2k, L
b c s |
OB =3i + 5k, B

4

oC =2i-j+3k

a) Find the lengths of the sides of the
quadrilateral.

b) What type of quadrilateral is OABC?

¢) Find the angles of the quadrilateral.

d) Find the distance from point A to the

line CB.

ABC is a triangle in which the position vectors
5 3 6
ofA,B,and Care| 2|,| 1|,and| -5
=3) -1 1
respectively.

Find the perimeter of the triangle.

Summary exercise 9

« EXAM-STYHLE QUE

STTAR
UESTIONS

14. Relative to an origin O, the position vectors

: 15,

16.

17.

18.

of the points A and B are given by

1 gl
— > OB
OA=|P|andOB=| 4

! 2

A
/’//\\\
0/\
B

a) Find the value of p for which 51: is
perpendicular to 55

Find the size of angle OAB when p = -1.
¢) Find the distance from point A to the

line which passes through O and B in the
case where p = —1.

With O as origin, the position vectors of
the points A and B are 2i + 4j + 7k and
—4i + j + k respectively.

Find the position vector of the point X on

— —»
AB which is such that 2AX = XB.

Find the angle which the vectori - 2j + k
makes with

a) thex-axis b) the y-axis ¢) the z-axis.
A quadrilateral ABCE has coordinates
A(1,0,2), B(-3,-2,0),C(-3, 2,¢), and
D(-1, 3, 3).

AB is parallel to CD.

a) Find the value of c.

b) Find the unit column vector which is in

the direction of BD.

'The position vectors of points Pand Q
1 2
relative to an origin O are | 2 |and | 4

4 k

respectively.



— . . .
3) Tihd thevaljsork for Which PO i 21. a) Find the vector equation of the line

) joining P(1, 2, -1) and Q(-1, 0, —1).
b) Find the coordinates of the foot of the

perpendicular to the vector | 2 |.
perpendicular from the origin to line PQ.

-3

b) For the value of k found in part (a) find 22. Find the cosine of the acute angle between

the size of angle POQ. 1 4 1
19. The diagram shows a triangular prism theliner=|0|+¢ 3 |and thevector|1|.
ABCDEF. 0 =5 0
A f .
V. F : EXAM-STYLE QUESTION:

,é _____________ --Np 23. The three lmesl have equations

| C f d
[/ f ff’ : y
.'Ilk | i ‘." ;‘ E
| { of .
[ . ' = : r=| 3 +l—2, 2 |+ u 1, and

E
/ r=(0| +v 1
3 0 =i
The position vec':t{‘)rs of 4, B_’ C,and D with a) Show that ] and [ intersect and find the
respect to an origin O are given by < ; ; i
— — — : point of intersection.
%: =i O =a) e b) Show that[ and [, do not intersect and
OD = 8i + 3j respectively. find the acute angle between them.

Find the lengths of the ed f the prism. :
4) %n = e‘ngt =S SRR R : 24. a) Find the point of intersection of the line
b) Find the size of angle FAD. through the points (2,0, 1) and (-1, 3, 4)
: with the line through the points

(=1, 3,0) and (4, -2, 5).
b) Calculate the acute angle between the

20. The position vectors of points P and Q
relative to an origin O are 2i + j — 2k and
—4i + 2j + 4k respectively. See the diagram.

a) TFind unit vectors in the directions of OP lines.
and OQ. 25. 'The point A lies on the line which is parallel
b) Find the unit vector in the direction of to the vector 2i + j — k and which passes
the line which bisects angle POQ. through the point (1, 1, 2). The point B
P(2,1,-2) lies on a different line which is parallel
g to the vector i + j — 2k and which passes
04/ \\ through the point (1, 1, 4). The line AB is
H‘“‘H \\‘ perpendicular to both of these lines. Find the
TS N equation of the line AB.

Vectors




26. With respect to the origin O, the lines  and i) Express each of the vectors BC and BA in
m have equations
r=3i+6j+k+s(2i+3j - k) and
r=3i-j+4k+t(i-2j+k)

terms of i, j, and k.

ii) Use a vector product to calculate angle

ABC.
respectively. iii) Find the length of the perpendicular
i) Show that/and m intersect and find the from Cto AB.

coordinates of the point of intersection.
29. With respect to the origin O, the points A

ii) Find the angle between the two straight il B aveposition vectors given by

lines I and m.

iii) Find the distance between the origin and 5p p
: — —>
line L. OA=|—p |and OB =| =5p
27. 'The points A, B, and C have position vectors, —p 7p

relative to the origin O, given by Where p is a constant

2 4 1 i) Find a vector equation for the line AB.
OA=|—2 3 OB =2 [ oc=l11 ii) Show that the point C (4p, -2p, p) lie on
1 1 3 AB.

iii) Show that OC is perpendicular to AB.

l) Findangle ACH. iv) Find the position vector of the point D
ii) Find a vector equation for the line CM, such that OD = OA.

where M is the midpoint of the line AB.
30. The straight line 1 has equation r =i+ 4j +

A(i+j + k), relative to an origin O. The point

P has coordinates (2, 3, -1).

i) Find the coordinates of the foot of the
perpendicular from P to L.

iii) Show that AB and CM are perpendicular.

iv) Find the position vector of the point

N, the foot of the perpendicular from
O to CM.

ii) Find the distance from P to [.

The diagrathow*y_a”getrahedron OABC.
The edges OA and OC have length 8 units

and 6 units respectively. The position vector
of B is 5i + 4.

Summary exercise 9




Vectors and scalars
A vector has both magnitude and direction.

A scalar has magnitude only.

Notation
x
Vectors written as | y | are said to be in column vector form.
z

Vectors written as xi + yj + zk are said to be in unit vector form.

Types of vector
A displacement vector indicates a movement from one point to another.
A position vector indicates a movement from the origin to a point.

—
If A and B are points with position vectors a and b then AB =b — a.

Properties of vectors
Two vectors are equal if they have the same magnitude and direction.
Two vectors are parallel if they are scalar multiples of each other.
A negative vector has the same magnitude as the positive vector but the opposite direction.
X
In three dimensions, the magnitude of the vector | y |or xi + yj + zk is given by /x* + y” +z°.
Z

L

A unit vector is a vector of magnitude 1. The unit vector in the direction of a is al
a

The scalar product of two vectors
The scalar product is defined by a-b = |a||b| cos @ where 6 is the angle between a and b.

a, b
The scalar product is usually found by usinga:-b=a b +ab,+ab,wherea=|a, |b=|0b

()

a, bz

ab, +ab, +a.b,

The angle between two vectors can be found by using the result cos@ = b

la

The scalar product of two vectors is zero if the vectors are perpendicular,
ie.ifa-b = 0 then a is perpendicular to b.

Vectors



Straight lines

[ ]

@

®

'The vector equation of a straight line passing through a point with position vector a and
direction vector b is r = a + tb, where ¢ is a scalar.

Two lines intersect if they have one point in common.
Two lines are parallel if they have the same direction but no point in common.

Two lines are coincident if they have the same direction and an infinite number of points in
common.

In three dimensions, skew lines are lines that are not parallel but do not intersect.

The angle between two straight lines is defined as the angle between their direction vectors.

Distance from a point to a line

]

To find the shortest distance from a point to a line, first find the coordinates of the foot of the
perpendicular from the point to the line.

Chapter summary



10 Differential equations

A differential equation is an equation which

d
relates a variable, y, to its derivatives, Ey or
2
sometimes j '1: . The behaviour of many
X
real-life systems in both nature and

technology can be modelled by differential
equations. Finding ways to produce a
function which satisfies the relationship

in the differential equation has resulted in
many scientific advances in recent times.
For example, the Navier-Stokes non-linear

partial differential equations are used to describe the motion of liquids and gases. As such, these

equations are incredibly useful when predicting how a liquid or gas will behave in a wide range of

fields - from improving the aerodynamic design of a car, to improving the effective delivery of drugs

through the bloodstream.

Objectives

e Formulate a simple statement involving a rate of change as a differential equation,

including the introduction if necessary of a constant of proportionality.

o Find by integration a general form of solution for a first-order differential equation in

which the variables are separable.

o Use an initial condition to find a particular solution.

o Interpret the solution of a differential equation in the context of a problem being

modelled by the equation.

Before you start
You should know how to:

1. Work out the value of ¢, given a curve and
point on the curve,

eg.a) y=2x+c¢ (-1,4)
4=2(-1)+¢ c=6

b) y=e'+tanx+c¢ (0, -1)

-1=1+0+c¢ c=-2

Skills check:

1.

Work out the value of ¢, given the equation
of a curve and the coordinates of a point on

the curve.

a) y=-2x+¢ (3,-2)
b) y=6x-x+¢ (—4, -3)
c) y=e"+c¢ (0,-2)
d) y=lnx+c (e, 3)




2. Use trigonometric identities, 2. Express cos28in terms of sin 8 only.
e.g. Express sin®6 cos®8 in terms of sin 8 only.
sin’@cos’ O = sin” (1 — sin” Q)
= 3 = 5
=sin" 6 —sin’ O

3. Express —
3. Decompose rational functions into partial fractions, | x =1

in partial fractions.

x+3

.g.
X+ 2x

x+3 é+ B

x*+2x x x+2

= A+ B=1land 2A =3

:A:é,B:—l
2 2

10.1 Forming simple differential equations (DEs)

A differential equation (DE) is an equation in which at least
one differential expression appears.

In Chapter 5, and previously in P1, you met the simplest differential

dx
you learned how to integrate more functions, all of which were in the

equation, Y - f(x). This has a solution y = Jf (x) dx, and progressively

dy

form —= = f(x).

orm —= (x)

% = f(x)is a first-order differential equation because it only contains the
dy

first derivative —=.
dx

With these skills, you will be able to solve first-order DEs in which the

variables are separable, i.e. DEs where the equation can be written in Note that sometimes
dy one of the functions
the form g(y) o f(x). f(x) or g(y) may be 1.

Since you know that j_}’ gives the gradient of the function which satisfies
X

the DE, you can get a feel for the behaviour of the functions which satisfy
the DE by sketching a ‘needle diagram’: we sketch a number of short line
segments at certain points on the domain, each with (approximately) the

gradient given by the value of % at each point.

Forming simple differential equations (DEs)




Such a needle diagram is shown here. Drawing this by hand is somewhat
tedious, but thinking about the patterns is helpful.

This needle diagram shows approximately what the YA
5 dy . : . N < e
solutions to —= = 2x look like. The gradient is only a R RN S Y
dx vvvvvasasst s
. ¥ . VAV VWA NSNS s 0 T
function of x, so the needles lying on the same vertical R N Y
. . . . e T A B S A1
line (i.e. those with the same x-value) will have the R e RS R T
) . T T S S I 0 A A A A
same gradient. On the y-axis (where x = 0) we see that EERR SRS SO TR
N P . T T U W L WL N SRS R R R I T Y S I |
the gradient is 0, so the needles that cross the y-axis are BN = it
L S R T VAN g F ol L O
horizontal. When the value of x is positive, so is the value R0 Meindna e e b L0
LR AN IR s g g W
of the gradient, and thus the needles have a positive gradient VAN AN s s e e g g
. . i A A AN NSl
which gets steeper as x increases. When the value of x is LA Ao wip e 8 8 )
D N RO T . (S . R R S B e T O )
negative, so is the value of the gradient, and thus the T N e = i
LAY VAN Ssess 200 0T
needles have a negative gradient which gets steeper as I e - R B I B
x decreases.
. dy . .
Solving the DE e 2x by integrating, as you already know how to do,
X
gives a general solution y = f2x dx = 2% + ¢. The solution is a quadratic
which is symmetric about the y-axis, with an undetermined constant
(which is why there is actually a family of functions which satisfy the
differential relationship).
Completing a number of the paths for different values of the constant ¢
lets you see how the needle diagram gives an impression of what the
solutions look like. Assigning a specific value to ¢ determines one
particular solution. We are often given an initial condition by which
we calculate ¢, the constant of integration.
; 5 _ _ a2
The graph here shows three particular solutions: y =x* + 1, y = x%, VA
and y = x> — 2. However, there are an infinite number of S s LY
particular solutions within the family that comprises the TR it et | el S
general solution. For first-order differential equations, R e il &
. . X i o i § ¥ S S e 7
each particular solution is distinct (it does not cross with i T, i e Al B
another particular solution at any point). o g e sl ot ol B
l\.\\\\,\“-\..\\-z’,r//J./J'.\IfJ
: s 3 3 i MmTNT s sty 77 rir— ™
Often the mathematical description of a physical situation v o s 4 AE ok
can be captured in a DE. g & i R
l\l\."-\_\\\.».-fffll-"tff!
\\\\\‘.\\-\—.{Liff/z;}rrr!
VA vv A NS r e s S
VAV N NN NS s e ST
(LS T AR NN R S BT I A A |
VR OVORYAN \}5 _'"7':.? S S 41 i
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Example 1

A body falling through a fluid experiences resistance, causing it to lose speed
at a rate proportional to its speed at that instant. Write down a differential
equation satisfied by the speed v at time t, and sketch a needle diagram in the
first quadrant to illustrate the solution to this differential equation.

---------------------------------------------------------------------------------------------------------------

dv Because the speed is decreasing it makes sense

i —kv to put a negative in the DE, which assigns k to be

positive, although this is not essential.

VA

47 L WL S N TR YO | (N O R VO T
LWL " ) B L T 1 I T, S T T |
L T ) I TS T 1 [ T S S S

= T T T O T S T T
\ L 1 L T \ , S T | \

S A Y BT T AN A Because the derivative is only a function of v, here

2‘: : : : : : : Y : \ the needle diagram has rows which all have the same

\ \ 5
o o b ser oo Al wa o G slope and the slopes get steeper as v increases.

1 i \ NN N\ NN \ W N A
~ b . ~ Y N ~ \ N S B

. 1 2 3 st

v}k

S WV | V| O
I I (6 '.__\ | S
LS ¥ L U A U W S S ¥

e e U N L Sl e e
e S A AN U, SO AN
S L S S R [T S | \ \

B b\ The question does not specifically ask us to sketch any
e s B particular solutions, but this diagram shows that the
e e shapes of particular solutions follow the needles in the

: ' T T = needle diagram.

1 2 3 4

Note: You will not be required to draw needle diagrams in examinations, but once you
have some experience of drawing them you may find that thinking about what they look
like — and therefore what any solution should look like — is a helpful check that your
solution ‘makes sense’, in the same way as you estimate solutions to problems.



Example 2

Water is leaking from a tank. The rate at which the depth of water is decreasing is
proportional to the square root of the current depth. Write down a differential
equation satisfied by the depth £ at time f, and sketch a needle diagram in the
first quadrant to illustrate the solution to this differential equation.

dh Gy 2
e = ~k«/5 <+——— This is similar to the equation from Example 1, but the power of the
. variable h is different.
T e
GEEE SRl
D e B e Because the derivative is a function of /1, again the needle diagram
I il Jeil (e i has rows which all have the same slope. However, now the increase
s e L «——— ingradient is much slower as / increases, since % is proportional to
0 N T \/E, not to h.
T 22 3
hJI.
4-\\\\\\\\\\\\\\
\\\\\\\\\\ L T S N N
aqj\.\n"\,\\\\\i\.\\\
NN AN LT N N AN
R Bl B
gjxxx\aN\'\.\\xxxxa
Fedss s s ioatisl
S B e S & e . . . . . .
i el I - This is reflected in the particular solutions the needle diagram
Sedecdne e fenpen suggests.
0 t
1 2 3 4 5
Example 3
dy

A differential equation has the form mE Sketch a needle diagram in all four quadrants to
X

illustrate the solution of this differential equation.

y

—1 1\| LRI IE B4t Tt I" —4

?.iuli.i I {l I_\_ f.l .-‘r.' Illf.ll A .

EEBL DA A8y 1 In quadrant 1, we see that the gradient is zero when
Ty ."\\\3' o N either x or y is zero, and then increases as either x or
J O T I . O .7 A R I .

Tl RO b P y increase.

NN W NN P o A IV B -

i t\.‘:., i lh B 2l i 11 Also, the function xy has reflective symmetry about
-5 ,f—_'a o (8 it b i, W B X both the x- and y-axes, so we can easily draw in all

r Jrir 7 A = & L[5 \

o (ol a) 'f ~oh oo b four quadrants.

rrr{r ] |:¢:’£ TS W O DR

ol ol r.-f.-_g_ A _Q\l_\ 1 i -

R T AR AT O R N R S A b

I gr.i_4., sl vl Ay g

1 1 [‘i H{r i J‘l L L} ‘ L II! P 0

S I SR - hodle ala ol o 4
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Example 4

A rectangular tank has a base of 5 m?. Water is flowing into the tank at

a constant rate of 10 litres per second (= 0.01 m’s™). At the same time,
water is leaking out at a rate proportional to I where h is the depth of
the water at time . When the depth is 1 metre the water is leaking out at
2 litres per second. Find the differential equation describing the rate of
change of h with time .

If water comes in at rate 0.0l m?s™! and the base area is 5m?, the water
coming in is increasing the depth at a rate of 0.002 ms™.

StthelDE is % —0.002f — k+/I.

If water is leaking out at 2 litres per second (0.002 m*s™) then this is

O'?_)OZ — 0.0004ms",

When h = 1, kv/i = 0.0004 = k = 0.0004, giving % =0.002f — 0.0004/71.

decreasing the depth at a rate of

1. The rate at which body temperature, T, falls is proportional to the
difference between the body temperature T'and the temperature
T, of the surroundings. Find a differential equation relating body
temperature, T, and time .

2. A certain substance is formed in a chemical reaction. The mass of the
substance formed t seconds after the start of the reaction is x grams.
At any time the rate of formation of the substance is proportional
to (30 - x). Find a differential equation relating x and .

3. Instudying the spread of a disease, a scientist thinks that the rate of
infection is proportional to the product of the number of people infected
and the number of people uninfected. If N is the number infected at time
tand P is the total number of people in the population, form a differential
equation to summarise the scientist’s theory.

4. The rate of increase of a population is proportional to its size at the time.
Write down a differential equation to describe this situation.
It also known that when the population was 2 million, the rate of
increase was 140 000 per day. Find the constant of proportionality
in your DE.

5. Sketch needle diagrams for the DEs in questions 1 to 3.



10.2 Solving first-order differential equations with
separable variables

We saw in section 10.1 that when asked to solve % = 2x, we can write y = f2xdx =x’+c

To be rigorous in solving this differential equation, we should write

d ,
Ey=2x3fldyzj2xdx:y=x“+c

If we need to solve a differential equation such as j_y o %, we can write
x gly

d
g(y)% = f(x), giving fg(y) ay dx = Jf(x) dx fG(y) = Jg(y) dy

then < (G()] = g() .
This has solutionjg(y) dy —jf(x)dx. en d.x{ ,V} 83

A differential equation which can be rearranged to the form

g(y)gl = f(x) is said to have separable variables.
X

Example 5 This DE is similar to the one in Example 1 except here
dy the constant of proportionality is positive. The solution
Solve I =2y. here is one of exponential growth, whereas the needle

diagram in Example 1 showed the solution was in the
form of exponential decay.

R R R N R P P RN T R [(EEEERRE

dy
= =2
9 Y

L ﬁ =2 ~+————— Separate the variables first.

31 X

fl dy= fz dx - Show what you are intending fo do.
¥
Iny=2x+c¢ < Integrate both sides.
y= Ae’* <t~ Write the solution in its simplest form.

The constant which is added in integration will become
a multiplicative constant if there is a log from the
integration and you take exponentials (i.e. A = ec)
—remember to change the letter when you do this.

Differential equations




Example 6
dy
Solve —=— = 2xy.
olve dx xy
dy
- =2
. 2
rin 2x This DE is very similar to that in Example 5. Once the
y dx variables are separated you essentially always have
1 g (2 ds two integrations to do and it can require any of the
y ¥ integration techniques you learned in P1 or in
| ., Chapters 5 and 8 of this book.
ny=x +c
y _ Ae“'z
Example 7
Solve Ll = COSX.
dx
dy 3/
spi P e o R _
P LN T T The needle diagram
S ¢ f"f::;_::::\-‘\:::::::, shows the gradient
1dy= |cosx dx 4 b i i n D i function, and the
e POl o R particular solution with
= - . .
-LI" e IPNENEAYL ¢ =1 is shown in blue.
2 2 2
Example 8
Solve :—i = cos’ y.
d
d—y = cos’ ¥
X
2 d}’ ; : )
sec” y - 1 < You need to get integrable functions on both sides.
jseczy dy= fl dx
tany = x + ¢ <« |ntegrate both sides.

y = tan ' (x + ) If the functional form is very complicated then it is
not a requirement to give the function of y explicitly,
unless the question specifies this. Here tan y = x + cis
a perfectly acceptable form of the solution to the DE.

Solving first-order differential equations with separable variables




Example 9
2 2
Solve dy _ 3x sin” y
de (2’ +2)
dy 3x7 sin y
dx (x =0
cosec’y Yo 3 < * You need to get integrable functions on both sides
dr  (x*+2) :
fcosecz pdy= =
St Integrate both sid dt ber standard
_ . _ ntegrate both sides — you need to remember standar
coty =—In A(x® +2), wherec=InA < forms of integrable functions.
Example 10
Solve dy 2 -2
el
dy 2
dx x> —1
dy 1 1 You need to use partial fractions to get this into an
Erala— N SR ——
i+l integrable form.

Here we express c as In A in order to combine the

y=Inlx —1)—In(x + 1)+ ¢
A/// terms.

Alx —1)
=1n
-/ (x+1) In examinations, you will normally be asked to first
express a rational function in partial fractions, and then
integrate the partial fractions to solve the DE.

Example 11

R R

S y* Inx
*17 El)i =Inx < Separate the variables.
y* dx
J.iz dy= jln xdx «———— You will need to integrate this by parts.
a
1 Remember, you may be asked to use any of the integration

1
_; = xlnx- J'x;dx =xlnx—-x+c techniques you met in Chapter 8 in solving DEs. After separating
the variables you always have two integrations to perform.

Differential equations




Exercise 10.2

Find the general solution to the following differential equations.

. Y_x 2. Y _x 3, & _x4xtl
dx y dx dx y
dy dy 2 dy 1
4, == +3 5 L= 6. L =—
e 7 *+3) dx cosy dv  xy
dy 3 2 dy 3 dy
7. — 8. T — 9. —_— =
2y P 4x e 2y TRt e
10. d—y=2xe" 11. £z2xsecy 12. Y__r
dx dx dx  x(x+2)
13. & _ cosx 10, S5y 15. 2¥ 407 - 1)
dx cosy dx x dx
dy cos’y dy : dy y -1
16, — = ——= 17. == = xe" sec 18. 2-==+——
dv  cos’x dx ¥ dx  x*+x
dy dy _ x(+y") dy [ x+3 j
19. L = y?sec? 20, —=——= 21, == ===1)*
s yisec’ x r y; B 2 i ¥
2| & - i
22. [y; }d_x =T " Use the substitution = e*.

23. y% = sin’ xcos” x

d
24, yL =27 _ Use the substitution x = 3 tan .
dx  (9+x%)

10.3 Finding particular solutions to differential equations

In the last section, the only information you were given
was the differential equation, and you could find the
general solution: a family of solutions, each member of
which is determined by the value of the constant point — and know what direction to head
of integration. If you also have a condition which in, then you can move along the whole
gives a point on the solution curve, then the particular function path.

Essentially the DE gives the gradient
function at any point in the plane. If you
have an initial condition — a starting

value of the constant of integration can be determined.
Such a condition is called an initial condition, or
sometimes a ‘boundary condition’

The first two examples use DEs for which we have already produced the general
solution, so you can see the extra work required in order to also produce a particular solution.

Finding particular solutions to differential equations




Example 12 .
Find the curve which satisfies amii = 2y and passes through (0, 3).
dy
=2
T
= p= Ao’ <+ From Example 5: this is the general solution.
x=0,y=3=>A=3 < Use the initial condition to find A.
= y=3e* <t~ This is the particular solution.
Example 13 .
Find the curve which satisfies ay = 22 - and passes through (2, 0).
-
e < From Example 10
a:x-'-‘—;z*‘_—l rom £xample
Alx -1
yzln{ (x )} YJL
(x+1) e e
.E:f:::.::‘gJ il oA ool el s
x:z,yzom(]:ln[-{:%} ::>A=3 |- : : : L | :I.“ L I : :: :
EEER SIS A RIEES o
-1 Slx—1) The needle diagram shows the DE with e ol d b s
==L (x +1) the particular solution through (2, 0). s ol i N dleidis e
Example 14
; . e Ay
Find the curve which satisfies v +3) and passes through (0, 9).
d_y_ 4xy
de  (x*+3) S
LT S L | SR I S A
1d dx . IS, ,/, e b oo
e D <—— Separate the variables. ‘R 7 SR I
ydx (x*+3) A /-: R
LN A TN Call i S A T SR
1 4x R o T
= ;dy= (x2+3)dx <—— |Integrate both sides. ~ k= = | e gles 2
-5 oL < 3=t =]
= lny=2In(x*+3) +c=1n A(x* + 3) o T L
L LA o I L T ¥ (R T T 1
= y=A(? + 3)
=2>x=0,y=9=>A=1 <~ Use the initial condition to find A.
= y= e+ 3

Differential equations




Example 15

. . . d .
Find the curve which satisfies dl = sinx secy and passes through (0, 0).
X
Yy s YA
— =sinx secy
dx EGR N S e oy D~ ZE e e
,,/,l;.-..\\‘\\\\
y e B
COS}V—:SIDx [ A 3 -\-.-\;'\.\\
r///,; T~~~y
f A S VI P SN I W
; o tle v g ds vyl y )
cosy dy = [ sinx dx el .%.- SE MR
\\\\\\ --/!ffil;
NVAMP NS T2y
\.\\\\\ﬂ.--’//////
X | B e e o e A
= siny =—cosx + ¢ Sk S
Y askett .
\\:\-"\--f}ﬂ"‘f,/
x=0,y=0=0=-1+c=>c=1 5 oz b . e
2 4 4 2

= siny =—cosx +1

The needle diagram shows the DE with the particular solution through (0, 0). Often the
solution curves for DEs are very hard to draw without using a computer package.

Example 16 5
Find the curve which satisfies d_y = xy’e® and passes through (0, 1).
X
d}' — 2 2x
de €
1 d_y = xe* < Separate the variables.
) o
1 d e 2x d 1 ; T 2
? y = | xe dx <« This will need integration by parts.
:>_l-_= x‘_]:“ela_leZ\ dx
y 2
= _L_ lxe?‘“" _ le“ 4 <« Remember the constant at the end here. This is the
y 2 4 general solution.

1 3
x=0,y=1=-1=0 - +c=>c= —7 = Usethe initial condition tofind c.

1x 2x
:>__1_=_1_‘xe2x_le21_3=“(3+e = 2xci )
4
g < Reorganise to find y explicitly. This is the particular

= Ix 2x
(B+e™ —2xe™) solution.

Finding particular solutions to differential equations




Example 17

Find the curve which satisfies y* % = x%" and passes through the origin.

¥ d_y i -« The variables are already separated here.

l 3 _l .;.3 5 i bl . 2.%0
=22y =3¢ Hc “—————— Since g (¢7) =3
1
x=lp=l=e= < Use the initial condition to find the particular solution.

sscssssnsssssssnnne R Y PN sesssns sesssmn

Exercise 10.3

Find the particular solution to each of the following differential equations,
given the prescribed initial condition. The first nine questions in this
exercise use the same DEs as those in questions 1-9 of Exercise 10.2,

for which you should already have found the general solutions.

dy x dy x3
= =1,y=2 p JR A =Ly=2
1 &y x ¥y ax x y
dy x*+x+1 dy
3. 2= 7 x=0,y=3 4, —=y(x+3); x=0,y=5
S v y 5 = y(x+3) y
L A x=0,y=2Z 6 L1y x=1y=2
dx cosy 2 dx xy
Z 2yd—y=4x3- x=2,36=3 8 2Ly x=1,y=05
) dx ’ ’ ’ dx LE ' : '
9 %=ycosx; x:%,y—l
dy _x, ) oy
W= L This is the same DE as Q1, but with

a different initial condition.

Differential equations




11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

j_y - L; =g y=l This is the same DE as Q6, but with
v a different initial condition.
; : : s 2R
A curve passes through the point (1, 2) and its gradient function is —
J

Find the equation of the curve.

A curve is such that & — Ll and the point (3, 9) lies on the curve.
\Jx +

X

Find the equation of the curve.

A curve is such that x° % = sec y and the point [1, %} lies on the curve.

Find the equation of the curve.

A curve is such that e” j—y —2sec’ x = 10 and the point [%, 0] lies on the curve.

X

Find the equation of the curve.

A curve is such that \/E j—y =1 and the point (4, 9) lies on the curve.
X

Find the equation of the curve.

. d = . .
A curve is such that & = Z?—XI and the point (0, 0) lies on the curve.
x X+

Find the equation of the curve.

A curve is such that x(x + l):—y = y and the point (1, 3) lies on the curve.
X

Find the equation of the curve.

A curve is such that e"f% = —e” and the point (0, 0) lies on the curve.
X

Find the equation of the curve.

d 2 . .
A curve is such that xaay = cos’ y and the point (1,%) lies on the curve.

Find the equation of the curve.

A curve is such that yj—y = xe*’ and the point (0, 3) lies on the curve.
X

Find the equation of the curve.



In this chapter, you have already seen how to set up simple differential equations
which describe a real-life context, and also how to find both general and particular
solutions of first-order DEs where the variables are separable. This section combines
all these building blocks to find solutions to real-life problems (usually in order

to determine when certain conditions in the future will be satisfied).

Example 18

A tank is draining in such a way that when the height of water in the tank is Acm, it is
decreasing at the rate of 0.5v/1 cms™". Initially the water in the tank is at a height of 25 cm.
a) Write down a differential equation which describes this situation.

b) Solve the differential equation to find / as a function of time.

¢) What is the height of the water after 10 seconds?

d) How long does it take for the water to reach a height of 5cm?

e) Sketch a graph of the height against time for 0 < ¢ < 20.

a) % =055 - The height is decreasing so j—h is negative.
t t
1 dh
b) —=—=-0.5
) \/ﬂ dt : Separate the variables.
1
=|—=dh= |-0.5d¢
Faet
= 2\/5 = 0 re = Integrate both sides: this is the general solution.
t=0,h=25=c=10 Use the initial condition to find the particular solution.
= 2Jh =—0.5t +10
=2 h= (—0.25r e 5)2; t=20- 4J}_: ) Writing the solution explicitly for / and for ¢ is helpful

, here as parts (c) and (d) ask for a height and a time.
€) h=(-025x10+5) =6.25cm

d) t=20-45=11.1seconds

e) : This is a section of the quadratic curve
30 - - - h = (-0.25¢ + 5Y.
204
10 -
0 T T T T "}
5 10 15 20

Differential equations



Example 19

The spread of a disease occurs at a rate proportional to the product of the number of people
infected and the number not infected. Initially 50 out of a population of 1050 are infected and the
disease is spreading at a rate of 10 new cases per day. T

1050 —
a) If nis the number infected after f days, show that Bl

5000
b) Solve this differential equation to find the number of people infected after £ days.

¢) How long will it take for 250 people to be infected?
d) Explain why everyone in the population will eventually be infected.

...............................................................................................................

a) dn _ kn(1050 — n) . n people are infected, and (1050 — #) are not
dt infected.
tzo,n:50,%:10:>k:ﬁ

: The initial condition on the rate of
d_n _ n(1050 — n) change allows you to find the constant of
dt 5000 proportionality.

b) 1 dn_ 1
n(1050 — n) dt 5000
1 A B L a-p-_L Use partial fractions to get an integrable
n(1050 —n) ~ m  1050-n 1050 form.

J(l +— JIOSO dr = j0.21 dt It is easier to take all the constant terms
n 1050 — ?I :
into one.
= Inn — In(1050 — n) = 0.21t + ¢
= ln{#] =021t +¢ Solve the DE and express in simplest form.
e

s n = Aed2M
1050 —n

£~ D= A 005 Find the particular solution using the initial

condition.
= [L] =0.05e*  (*)
1050 —n
¢) n=250; 0.05e"%" = %: e®2 — 625
=t =8.73 days
1050 x 0.05e”**
d) n= IET::” Rearrange (*) o give 7 explicitly.
+ 0.05¢™
— n=1050 x | 005" _
1 + 0.05¢™"

n—>1050 ast — o0

As t increases the exponential term dominates in the bracket and this expression tends to 1.

Sometimes the problem will involve a constant of proportionality (given by k in Example 19) and also a constant
of integration (given by c in Example 19). Be careful not to mix these up, as they have different values!



Example 20

A stone falls through the air from rest and, f seconds after it was o ) .
This is modelling motion

. . . dv
dropped, its speed v satisfies the equation = 10 — 0.2w. under gravity at 10 ms-2with

air resistance proportional to

a) Show that v =501 — e ™). e

b) Calculate the time at which the stone reaches a speed of 20m s,

c) Sketch the graph of v against f and hence show that the velocity of the stone will never be
more than 50 ms™.

d) Explain what the differential equation tells us would happen if the stone was thrown

downwards with a speed of 60 ms ! instead of being dropped.

dv
—=10-0.2
a) - v
1 dv _ : Separate the variables.
10—0.2v dt
:j 2 _dv= f1 dr
50—v
= 5In(0-v)=t+¢ Find the general solution.

= In(50 —v)=-0.2t + C
= 50 —v = Ae™**
i=0,v=0=> A=50 The initial conditions provide the particular solution.
= v=501-e"")

b) 20=50(1— e ¥)= —0.2f =In0.6

Where C = -0.2¢

= t=255 L 02t
The expression in the bracket, (1 — e™#),
<) approaches 1 as t increases, but e ** cannot
50 - become negative so the bracketed expression
No air resistance ;
; ' will never exceed 1. Hence the speed cannot
a4 exceed 50ms".
I
30 4 |' With air resistance proportional
1o speed ) . )
| This sketch also shows the behaviour in the
2 ‘free-fall' model with no air resistance.
; Until the stone starts to travel quickly the
10 - " free-fall model is quite a good approximation,
[ as air resistance is negligable at a slow speed.
U T T T T ;t
10 20 30 40

d) If v is 60 initially then there will be a negative rate of change for the speed, so the stone will
slow down — again approaching a terminal velocity of 50 ms~, because that speed is where the
air resistance exactly matches the gravitational force.

Differential equations
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a)
b)
c)

b)

Example 21

The size of a colony of pests, n, which fluctuates during the year,
is modelled by an entomologist with the differential equation
E 0.21(0.2 — cos t), where t is the number of weeks from

the start of the observations. There are 400 pests
in the colony initially.

...............................................................................................................

Did you know?

An entomologist is a scientist
who studies insects.

Solve the differential equation to find  in terms of £.

Find how many pests there are after 3 weeks.

Show that the number of pests reaches a minimum after approximately
9.6 days, and find the number of pests at that time.

Find how many pests there are after 27r weeks.

Explain why the model predicts that the number of pests will grow infinitely
large over time.

dn
— =0.2n(0.2 — t
- 1 ( cost)
5 dn
o dE Mo Separate the variables.
J.E dn = J(OQ - cost)dt

1
= 5lnn=02f-sint+c : Integrate both sides.
—n= AeD.Z(O.Zr—sint)
t=0,n=400= A =400 Use the initial condition to find the

) particular solution.
= = 400e0‘2(0.2f—5m1‘)
t =3 = n=400e"""" = 438.44... = 438 Substitute the given time.
% =0= cost =0.2= t = 1.369 weeks ~ 9.6 days Solve for a turning point.
2 . N .

o 0.2n(0.2 - cost) = d—? = 0.2d—”(0.2 —cost)+02nsint Find the second derivative
dr dt” dt to determine whether
s the turning point is a
— is positive for f = 1.369 (the first term is zero maximum or a minimum.

d
because d—n = ( defined the turning point), so it is a minimum.
t

1 = 400 2RIIB-=m13®) _ g7 Find 7, given t = 1.369 weeks.

P> Continued on the next page



d) t=2n, n=400e""") = 514 ny
e) 'The exponential function has a term 0.04 ¢ as well 1282 1
as the bounded periodic term, so as t increases n 800 4
will grow infinitely large. 700 4
600 -

A sketch of the solution function shows the w0 ]

behaviour of the model. While it fluctuates over a ggg I
period of 2 weeks, there is also an upward trend. 500 i
100 4

0 T T T T T T T T T T T T 'I

Example 22

A model of the deflation of a sphere of radius rem assumes that at time f seconds after the
start, the rate of decrease of the surface area is proportional to the volume at that time.

W’hentzo,r:ZOc:mand%:—?;.

a) Show that r satisfies % =—0.0075r".

b) Solve this differential equation, obtaining an expression for r in terms of .
¢) How long will it take for the sphere to deflate to a radius of 10cm?

d) How much longer will it be before the radius is 5cm?

---------------------------------------------------------------------------------------------------------------

a) A=4dnr’=> a4 _ SEri; V=4 Use the formulae for a sphere.
dt dt 3
dr 4 5 5 &
= SEra =-k E?rr - Express the stated relationship in terms of r.
dr
t=0,r=20,—=-3
ST

Use the initial condition to find the constant of

= k=0.045 proportionality.

= dr _ _0.0075¢2
dt
) 2 dr 1 = [ =200 4.~ 14 Separate the variables and note that 0.0075 = —,
3 dt 3r’ 4
— W0 - Integrate both sides.
3r

P> Continued on the next page
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20 400 20 Use the initial condition to find the particular

t=0,r=20c=—=—=f+— :
3 3r 3 solution.
3r 3
400 3t +20 Express rin terms of ¢,
_ 400
3t+20
400 20
) t=—-=—
3r 3
When r=10,
_4_20_20_.2
3 5 2 =
d) Whenr=5,
80 20 60
f=———=—=20
3 3 3

1
So it takes an extra 135 seconds.

A sketch of the solution function shows the behaviour
of the model and why it takes increasingly longer for B
the radius to decrease by a set amount. 5 10 15 20 25°

Example 23

In a chemical reaction a substance X reacts with another substance Y. The masses of
substances X and Y after time f seconds are x and y grams respectively.

It is given that % = —0.5xy and x = 20e7*. Also, we know that when t =0, y = 50.
a) Form a differential equation in y and .
b) Solve this equation to obtain an expression for y in terms of f.

¢) Find the mass of Y that remains as f gets very large.

---------------------------------------------------------------------------------------------------------------

a) d_); =—05xy; x= 20e'2':>% =10ye - Removing x from the DE.
1 dy 5
b) ; Ar —10e™ Separate the variables.
J‘l dy = f—lo e dt Integrate both sides.
W

P> Continued on the next page



=iny=5e%*+¢ - :
Use the initial condition to find the

t=0,y=50=c=In50-5 particular solution and simplify the
expression.
=Ilny=5e*+1In50-5

0 D
ﬁln[soj 5(e 1)

a2t
= y=50&"¢ Y

c) e*— —5asf gets very large, so 50 e~ grams will remain.

dT
A rod has the property that the temperature gradient, —, at a distance x cm

dx
from the end of the rod being heated is proportional to the distance x.

The end of the rod is heated to a temperature of 400 °C, and when x = 50

we know that LY 8.
dx

a) Write down a differential equation which is satisfied by the temperature
T at a distance x from the end of the rod.

b) Solve the differential equation to find an expression for the temperature
T in terms of x.

¢) Calculate the temperature at the point 50 cm from the heated end of the rod.
d) Calculate how far from the heated end of the rod the temperature reaches 20°C.
In a chemical reaction a substance X reacts with another substance Y.

'The masses of substances X and Y after time { seconds are x and y grams
respectively.

1t is given that j—): =—0.1xy and x = 30e™*. Also, when t =0, y = 20.

a) Form a differential equation in y and .

b) Solve this differential equation to obtain an expression for y in terms of t.
¢) Find the proportion of Y which will remain when t is very large.

Carbon-14 occurs in all living creatures at 1 part in a trillion carbon atoms,
but when a creature dies, the carbon atoms are no longer exchanged

with the atmosphere. Carbon-14 atoms decay at a rate proportional to

the amount remaining at any given time.

a) If m is the mass of carbon-14 in 1 gram of carbon at any time ¢ years
after a creature dies, form a differential equation relating m and t and solve it.

b) Taking m = 1 when t = 0, show that the differential equation is satisfied
by m=e*.

Differential equations



c) Carbon-14 is used to date fossils. It has a half-life of 5730 years (every
5730 years the mass of carbon-14 per gram of carbon in the fossil reduces
by 50%). Find the value of k in the expression for m.

d) A fossil is found to have 0.008 grams of carbon-14 per gram of carbon.
Calculate how old the fossil is.

A reservoir in the shape of a cuboid has a base area of 60 000 m?. Water
is seeping from the reservoir at a rate proportional to the depth, and it is
known that the reservoir loses water at a rate of 3000 litres per minute
when the depth is 10 metres.

'The depth of water in the reservoir is 8 metres when a heavy storm starts,
causing the reservoir to be filled at a constant rate of 1500 litres per second.

a) Write down a differential equation which is satisfied by the depth of
walter, d metres, at time { minutes after the storm starts.

b) Solve the differential equation.
c) If the storm lasts for two and a half hours, calculate the depth of water
in the reservoir when the storm ends.
A colony of bacteria grows at a rate proportional to the size of the colony at any time.

a) Write down a differential equation satisfied by the number of bacteria
N (in millions) after t hours.

Initially the colony has 2 million bacteria, and after 6 hours it has

2.5 million bacteria.

b) Solve the differential equation to find an expression for N in terms of t.

¢) The space in which the colony is housed has room for 10 million bacteria.
Calculate the time at which the space reaches saturation.

A body moving through a liquid experiences a resistance to motion which
causes it to lose speed at a rate proportional to its speed at any time.

a) Write down a differential equation satisfied by the speed vms ! after
time f seconds.

Initially the body has a speed of 25ms™, and after 10 seconds it has a

speed of 20ms™".

b) Solve the differential equation to find an expression for v in terms of .
c) Calculate how long it takes for the body to lose half of its initial speed.
A disease spreads at a rate proportional to the product of the number of

people, n, infected and the number of people not yet infected. The population
has size P. Initially 5% of the population is infected.

a) Write down a differential equation which is satisfied by # and the time .
After 3 days it is found that 10% of the population is infected.

b) Solve this differential equation to find the number of people infected after t days.
¢) How long will it take for half the people to be infected?

d) Explain why everyone in the population will eventually be infected.



1.

Find the general solution to the following
differential equations.

d}’ xz dy )
-4 = b) = =2xcos”
a) e ) g, = 2xcos’y
c) % =e**secy d) xtany % o5
dy _ 5., dy Xy
h/ APPN - i
E) dx ¢ ) dy 2 41

d
2 +6)L =38
g (¥ +6) - =8xy
h) sin393—9=(x+2)cos39
X

Find the particular solution to the following
differential equations, with given initial

conditions.

a) %=3X;ytx; xEdoy =]

b) %=2yzsinx; x=my=1

c) %ze“"", x=0,y=0

d) %ze‘r vy t=0,v=9

e) %=xe“", x=0,y=0

f) lny%:;;i; x=1y=1

A curve issuchthatizLandthe

dx  x+1

point (1, 1) lies on the curve.
Find the equation of the curve.

. d o
A curve is such that -2 = xe secy and the
point [0, %j lies on the curve.

Find the equation of the curve.

: 10.

A curve is such that y ¢’ cos’ xd—y =1land the

point (%, 0] lies on the curve.

Find the equation of the curve.

A curve is such that \/; % —=—2  andthe

|
point (2, 0) lies on the curve.

Find the equation of the curve.

A curve is such that y:—y = cos’ x and the
X

point (%, 0] lies on the curve.

Find the equation of the curve.

2y +1
A curve is such that [ ’1: Jd—y — L and the
¥ +1 dx «x

point (1, 0) lies on the curve.
Find the equation of the curve.

The temperature of a hot body decreases at a
rate proportional to the difference between
its temperature and the air temperature
around it. A body is heated to 90°C and
placed in air which is at 20 °C.

a) Write down a differential equation
relating the temperature T of the body
and the time .

After 4 minutes the body has cooled to 60°C.
b) Solve the differential equation to find
an expression for the temperature T in
terms of 1.
c) Calculate the temperature after
10 minutes.
d) Calculate how long it takes for the body

to get down to within 5°C of the air
temperature.

The resistance a body experiences passing
through a liquid is proportional to the square
of its speed at any time. 'The body has a speed
of 50 ms™! entering the liquid.

Differential equations
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s 12,

a) Write down a differential equation
relating the speed v of the body and
the time 1.

After 4 seconds the body has slowed to 30ms™. :

b) Solve the differential equation to find an
expression for the speed v in terms of t.

c) Calculate the speed after 10 seconds.

d) Calculate how long it takes for the body
to slow down to 10 ms™.

The spread of a rumour in a large group of

people is thought to reach new people at a rate :

proportional to the product of the number of
people who have heard the rumour and the
number who have not heard it.

In a population of 2000 people, initially 50
people have heard the rumour. Two hours
later, 300 people have heard it.

a) Write down a differential equation
relating the number of people, N, who
have heard the rumour with the time .

b)

Solve the differential equation to find an
expression for N in terms of t.

of people to have heard the rumour.

a) Show that it where v = %

dt dx
The rate at which a body loses speed, v, is
proportional to its displacement, x, from a

fixed point.
b) Show that the differential equation
v % = —kx describes this situation.
X

The body has speed 10ms™ as it passes through
the fixed point and just reaches a point 5 metres
from the fixed point as it comes to rest.

* 54,

¢) Calculate how long it takes for the majority : 14.

15.

¢) Solve the differential equation to find an
equation relating v and x, showing that
k=4.

d) Find the speed of the body when it is

3 metres from the fixed point.

A tank contains a solution of a mineral in
water. Initially there is 600 litres of water
with 12 kg of the dissolved mineral.

The mixture is drained at a rate of 30 litres
per minute and simultaneously pure water
is added at a rate of 30 litres per minute.
The tank is stirred continuously to keep the
mixture uniform at all times.

a) Form a differential equation which
is satisfied by the mass, m kg, of the
mineral in the solution at time t minutes.
b) Solve the differential equation to find an
expression for m in terms of f.
When the solution contains 8 kg of the
mineral another 4 kg is added, and the

process is repeated.

c) Find the first time at which the solution
contains 8 kg of the mineral.

The variables x and y are related by the
differential equation

dy _ 4ye™

dx 5+e”

Given that y=36 when x=0, find an
expression for y in terms of x.

The variables x and 0 satisfy the differential
equation

e (x +4)sin* 30,

de

and it is given that x=0 when 0=0. Solve the
differential equation and calculate the value

1 i 3
of x when 6= Z?:, giving your answer correct

to 3 significant figures.



16. A large field of area 3km? is becoming pier
infected with a soil disease. At time f years B D £
the area infected is xkm? and the rate of 1ER| 5
growth of the infected area is given by the .

differential equation % = kx(3 — x), where c

k is a positive constant. It is given that when A

t=0, x=0.5 and that when t=2, x =2. The path followed by the boat is called a
tractrix, and has the property that the rope is
always tangential to the path of the boat.

a) Ify=1(x) is the path of the boat,

inxz

i) Solve the differential equation and show
that k=~In 10.

ii) Find the value of t when there is only 0.5
km? of the field not infected giving your show that ¥ _ —

answer to 3 significant figures. X v

b) Use the substitution x = L cos 6 to show

Note: Question 17 is beyond the scope of the
that the solution to the differential

Cambridge International syllabus but may aid in

your understanding. equation is
flo) =— X (P—a)
17. A man walks along a pier pulling a toy boat (L—y(L —x7))
by a rope of length L. The man keeps the [You may use without derivation that
rope taut and horizontal. Initially the rope is Jcosec@ d6 = In|cosech — cotf|.]
at right angles to the pier, with the boat at A

and the man at B. A little while later the man
is at E and the boat is at C. D is the point on
the pier such that CD is perpendicular to the
pier. CD = x, BD = y.

Differential equations



Differential equations
A differential equation is an equation in which at least one differential

expression appears.

A first-order differential equation only contains a first derivative

Y or equivalent|.
X

The differential equation has separable variables if the equation can

be written in the form g(y) % = f(x).

The general solution is obtained by integrating both sides of
Jg(y) dy = J. f(x) dx and including + ¢ on one side.

A particular solution is obtained by using an initial condition, or boundary
condition, to calculate the value of ¢ in the general solution which means the
solution satisties that condition.

All the techniques used in integration can be required to solve the
two integrals obtained when the variables are separated.



1 1 Complex numbers

We can use computers to generate beautiful
images from complex numbers, such as the
Mandelbrot set, shown on the left. However,
complex numbers are also widely used in
real-life applications. For example, they are
used in the study of electrical circuits and
the flow of fluids around objects, as well as
in the technology of digital cameras and
mobile phones. They are also used in the
design of aeroplane wings.

Objectives

Understand the idea of a complex number, recall the meaning of the terms real part,
imaginary part, modulus, argument and conjugate, and use the fact that two complex
numbers are equal if and only if both real and imaginary parts are equal.

Carry out operations of addition, subtraction, multiplication and division of two complex
numbers expressed in Cartesian form x + iy.

Use the result that for a polynomial equation with real coefficients, any non-real roots occur
in conjugate pairs.

Represent complex numbers geometrically by means of an Argand diagram.

Carry out operations of multiplication and division of two complex numbers expressed in
polar form r (cos 6 + i sin 6) = re®.

Find the two square roots of a complex number.

Understand in simple terms the geometrical effects of conjugating a complex number and of
adding, subtracting, multiplying and dividing two complex numbers.

Mlustrate simple equations and inequalities involving complex numbers by means of loci in
an Argand diagram, e.g. |z - a| < k, |z - a| = |z - b], arg(z - a) = a.




Before you start

You should know how to: Skills check:

1. Use the trigonometric identities to simplify 1. Simplify
expressions, a) (1 +sinB)*+ cos’f
e.g. (1 +cosB)’ +sin’6 R e

— 2 i
=1+ 2cosO + cos?0 + sin’O ¢) cos'@+ 2 sin’0cos’ + sin‘6.

=1+2cos@+1

=2+ 2cosB=2(1+ cosh)

2. Manipulate and rationalise surds, 2. Show that
eg (3v2) + (23) ) 2‘/:/_ 35
= (3v2)(3+2) + (2v3)(243) | f
b) £¥2_ 5,342
=9x2+4x3
- 30 : 9 1 A3l
. 2i_2-3.1-45 . 23 -2 4
g X .
1+43 1445 1-43
s ufalEl
AT,
_5-3f3
1-3
_3\3-5
2
3. Work out the discriminant for a quadratic =~ 3. Work out the discriminant for
equation, a) ¥-5x+2=0

eg 2x’-5x+3=0
a=2,b=-5,¢=3

b) 28~ 7x-4=0

c) 3x-5x*-4=0.
Discriminant: &> - dac=(-5)*—-4x2x3 =1

pZ% 2 Before you start




11.1 Introducing complex humbers

In P1 we saw that if the discriminant, b? — 4ac, of the quadratic equation
ax® + bx + ¢ = 0 is negative, then the equation has no real roots. This is because there
is no real number which, when squared, gives a negative real number.

The ancient Greeks were puzzled by the fact that there was no real number which satisfies the
equation x* = —1. However, it was not until 1545 that the Italian mathematician Gerolamo
Cardano thought about the possibility of complex numbers when he solved the equation

x(10 — x) = 40 to give the solutions x = 5 ++/—15. Later in the 16th century Rafael
Bombelli, another Ttalian mathematician who is generally regarded as the inventor of complex
numbers, developed this concept to enable him to solve cubic and quartic equations.

Before we discuss complex numbers in more detail, we introduce the symbol i which we

will use to denote the non-real number v—1.

It follows that i* = —1.

Jl=i= p=-1

As stich, V=9 =0 x—1=/9 x=1=3i

More generally, V—b* = bi. Numbers of the form bi, where b is real, are called imaginary numbers.

Example 1
Solve the equation in each case.
a) x*=-25 b) 4x>+484=0 c) x*+20=0
a) x*=-25
4 Take both square roots of —25.
x =225
Write +/—25 as a multiple of i.
b) 4x*+484=0
x’=-121 < Rearrange to find the value of x2.
x=+J-121 = #11i
c) X+20=0
x=12/-20 =+ +20i | pave the value of x in exact terms.
=+2+4/51 — :
You may leave your answer in surd form.

Complex numbers
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Example 2
Simplify:
a) i b) i c) 1 d) (-i)° e) (2i)

a) P=xi=-1lxi=-i e Replace i’ with —1.
b) i4:i2Xi2=—'1X—l:l

) P=itxixi=lx1xi=i g Write i as a product of powers of i each of which

you can replace with 1, =1, ior —i. Use i* = 1 here.

e) (2P =32xi"=32xi'xi=32i Expand the brackets and simplify.

It is useful to remember: \ Use the ordinary laws of algebra to write the

F=-1,P=-ii*=1. expression without brackets, then simplify.

d) (-i)yf={f=ix=1x-1=-1

.......... T Y PR R P R R N R T R R R R

Exercise 11.1A
1. Which of the following equations have no real roots?
a) Z*+5x+2=0
b) 2 —4x+1=0
c) Z+5x+7=0
d) 3x-x+2=0
e) 2x’+5x-1=0

2. Solve the equation in each case.
a) 2=-4 b) x*=-100 c) x2=-13 d) x*=-75

3. Simplify the expression in each case.
a) i b) i’ €) d) i» e) i*

4. Simplify the expression in each case.
a) ()" b) (2i) o (3 d) (-2i)*
5. Write down the square roots of

a) 64 b) -64 d -19 d) -32.

6. Solve the equation in each case.
a) X+49=0 b) 2+23=5 ¢ 2:2+9=5 d) (5x)2=-125

T

7. Simplify the following expressions.

a) (v2i) b (7)o |

Introducing complex numbers




8. We wish to find two numbers, x and y, whose sum is 10 and
whose product is 40.

a) Write down two equations in x and y which fully
describe this problem.

b) Show that x> —10x + 40 = 0.

¢) Show that this equation has no real roots.

At the beginning of this chapter we discussed how the mathematician
Cardano solved the quadratic equation x(10 — x) = 40 to give the solutions

x=5+4/—15. Our experience of solving quadratic equations by using the

b+ b —4ac

formula x = = = shows us that our answer is made up of two
a

parts, ;—b and Y2 =43¢ The first of these expressions will always be real ~ Note: The ‘b’ used in

% 2 the formula for solving a
(provided the coefficients a, b, and c are real). However, we have learned quadratic equation should
that the second expression might not be real; it might be imaginary and not be confused with the
‘b’ used in the complex

therefore expressed as bi (where b is real). This leads us to our definition :
number a + bi.

of a complex number.

Note: Complex numbers
may be written in the form
a + biorinthe form a + ib.

A number of the form a + bi, where a and b are real and i = -1, is

called a complex number.

A number such as 2i is said to be imaginary, whereas a number such as
5 + 2i is said to be complex. We use the letter z to denote a complex number,
z = x + 1y, where x and y are both real numbers.

We can also see from the quadratic formula, provided that Note: All imaginary numbers are

a, b and c are real, that the roots occur in pairs, one root of the also complex numbers as they
form a + bi and the other of the form a - bi. For example, if one can be written as 0 + bi. Similarly,
root is 3 + 2i then the other root will be 3 - 2i. Pairs of complex all real numbers are complex
numbers like this are referred to as complex conjugates numbers as they can be written in

of each other. the form a + Oi.

The complex conjugate of a + bi is a — bi, where Note: In this book we use a + bi

a atid b are real fiumbers: when we know the values of the

real and imaginary parts

(e.g. 3 + 7i) and x + iy when we

zis denoted by z*. do not know the values of the real
and imaginary parts. However, this
is just a matter of preference and
you may like to write it differently.

The complex conjugate of a complex number

Complex numbers




Example 3
Solve the equation 22" - z + 3 = 0.

R R R R T P R R R R P R R RN Y

Using the quadratic formula,

7= —b +/b> —4ac

2a

e —(-D + /(_1)2 _4x2x3 = Substitute @ = 2, b = —1 and ¢ = 3 into the

%2 formula.

_1v1-24 impli i
z= i < Simplify the expression.

DR

a 2t Here we leave the answer in the form a =+ bi,
J2_3_ but we could separate the two values and write
. o RN V2,

2 1
Z=—+—ijand - — —i.
4 4 4 4

Z

=Ly
4

Alternatively, completing the square,
22 Z2+3=-0

2(z2—lz)+3=0
2

Exercise 11.1B

1. Express each of the following complex numbers in the form a + bi .

a) 5++-1 b) 4--6 &) =~Tal=a0 d) -1-+-8l
2. Write down the complex conjugate of the following.

d) d=i b) -5+i Q) -9-7i d) 3i-6

Introducing complex numbers




Write down the conjugate of the complex number in each case.
a) z=10+ 12i b) z*=3-3i

) z=5i d z#=8

Find whether the following equations have real or complex roots.
a) Z2-6z+7=0

b) 52+z+2=0

c) Z2+8z=0

d) 4+3z-322=0

e) 4z2+5z+3=1

f) 1-22=4+z

Solve the following quadratic equations by using the quadratic formula.
a) z22-4z+5=0

b) 422+2z+1=0

c) 222-9z-3=0

d 2-z-32=0

e) 5z-3z2=1+4z

f) 10z°+5z+20=15

g Z+iz-1=0

Solve the following quadratic equations by completing the square.
a) 22-2z+3=0

b) 3z22+6z+10=0

c) 222-8z+7=0

d) 92-27z+3=0

e) (z+1)-(2z+2)?%=3

f) z(z+6)=-10

g) 22-2iz-5=0

Solveiz’ + z+2i=0.
(You may leave your answers in the form £ where p is a real number

and g is an imaginary number.) d

Complex numbers




11.2 Calculating with complex humbers

We are about to see that when adding, subtracting, and multiplying complex
numbers we use the normal rules of algebra. The division of complex
numbers is carried out in a similar way to that of dividing surds.

Suppose we have two complex numbers, z, = a + biand z, = ¢ + di. It is common to use
2, Z, Z4.. T We want
to use more than one
complex number.

We add them in the following way:
z,+z,=(a+bi)+(c+di)=(a+c)+ (b+d)i

To add two complex numbers we add their real parts and add their
imaginary parts.

We subtract them in the following way:

z,-2,=(a+bi) - (c+di)=(a-c)+ (b-d)i

To subtract two complex numbers we subtract their real parts and

subtract their imaginary parts.

We multiply them in the following way:
z,z, = (a + bi)(c + di)
=ac+ bci + adi + bd?’
= (ac - bd) + (bc + ad)i

To multiply two complex numbers we use the normal rules of algebra
and simplify the answer using i* = —1.

We divide them in the following way:

Zl _ﬂ+bi

z, c+di

at+bi_ c—di
¢+ di x c—di
(a+ bi)(c —di)
(c +di)(c — di)

ac + bci — adi — bdi*
¢ +cdi —cdi — d°F°

_(ac +bd) +(bc —ad)i

e d
_ (a::+ b?’) i (bec — .:zd)i
c+d c+d

To divide two complex numbers we multiply the numerator and
the denominator of the fraction by the complex conjugate of the
denominator.

Calculating with complex numbers




Example 4

The complex numbers z and z, are given by z =5 + 2iand z, = 3 + 4i.

Findz +z,z -2,z 2z and Sl
1 25l 212 z

2

S T PR T R T PR RSN R R Y

Z,+z,=5+2i+3+4i = Add the real parts and the imaginary parts separately.
=8 +6i
z, -z,= (5+2i)- (3 + 4i) - Use bra_ckets as you would when subtracting one
B O3 — i algebraic expression from another.
=3—2i
z,z,= (5 +2i)(3 + 4i) < Expand the brackets and simplify.
=15 + 6i + 20i + 8i*
=7+ 261 & Usei*=-1.
Z _5+2i
Z 3]
SISE AL sl . . .
= - -
ST X 34 Multiply the numerator and denominator by (3 — 4i).

_ (5+2i)(3 —4i)

(3 + 4i)(3 — 4i)

_ 15+ 6i—20i—8i°
94+ 12i —12i — 16i°

¢ Expand the brackets and simplify.
_23-14i
9+ 16

Sele e e L
25 25 25

Exercise 11.2

1. Simplify
a) (2+1)+(3+5i) b) (7 + 6i) + (4 - 2i)
c) (1-3i)+ (-4 + 3i) d) (6-5i)+ (=3 + 8i)
e) (-2+3i)+ (3+2i) ) (1+1)+(-2-9i).
2. Simplify
a) (4+43)-2+1) b) (5+2i)-(3-4i)
c) (7-1)=(=2+5i) d) (5-5i) - (=6 + 3i)
e) (=3 +6i) = (3+4i) BY [l == (S3—81%
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3. Simplify

a) 2(3 +4i) +3(5+1) b) 2(1 - 6i) - (4 - 2i)
<) 3(1 - 3i) + 2(-4 - 3i) d) 5(6+ 5i) + 2(=3 + 8i)
e) 6(2-3i)-3(3 +5i) £) 4(1 +4i) - 3(2 + 7i).
4. Express in the form x + iy, where x and y are real.
a) G+1)2+1) b) (3 +2i)(5 - 4i) ¢ i(7-1)
d) (3-4i)(-1+2i) &) (=1 +6i)(2 +2i) £) 3(1 - 3i)(-4+ 3i)

5. Expressin the form x + iy, where x and y are real.

a) 214 b) =2 o =2 Q =
241 1-2i 5—61 8i
s ) : - 2—31
e) 9 31 t) 2i : g) 6+.2.1 h) '\/_
9 + 3i 34 4i 4 Dok AJET

6. 'The complex number z is given by z = V2 -i
a) Express 2 in the form x + iy, where x and y are real.

b) The complex conjugate of z is denoted by z*. Express the following in the form
x + iy, where x and y are real.

i) z+2* i) 2(z-z%) iii) 5zz* fy) =
1Z

7. 'The complex numbers z, and z, are given by z, = 5 - 12iand z, = 3 - 4i.

Express the following in the form x + iy where x and y are real.

a) z,+z, b) z,-z ¢ zz, d) i—
8. Express the following in the form x + iy, where x and y are real.
a) (2-1)° b) (2-1i) o (2-1) d) 2-i)
9. Ifz =1+ 2iand z,= 2 - 3i, express the following in the form x + iy where x and y are real.
a) — b L+1
z, +2z, 92y

10. Express in the form x + iy, where x and y are real.

a) 1 b) o 221 d L &) ——+ 12
1-i 3+5i 1+2i a+ib 4+31  4-3i

1l.u=a+ib
Find the real part and the imaginary part of

a) u® b) u-u* ) 1’ - ().
12. Express in the form x + iy, where x and y are real.

o S cosf + isinf
a) (cosB+isin@) b) ST S — <) cosf —isinf

Calculating with complex numbers




11.3 Solving equations involving complex numbers

We can order real numbers by placing them on a number line, but because
complex numbers have both a real part and an imaginary part, we cannot
order them in the same way.

If two real numbers are equal they would occupy the same position on the
number line. For two complex numbers to be equal, their real parts must be
the same and their imaginary parts must be the same. So if for example
x+iy=5 - 2i, it follows that x = 5 and y = -2.

Two complex numbers are equal if both the real parts are equal and the

imaginary parts are equal.

Example 5
a) Find the value of the real number p such that p + (2 - 3i)(1 + 5i) is an imaginary number.
b) Find the values of the real numbers x and y such that 4(x + iy ) = -2y - 3ix - 5(3 + 2i).

A T P T T PP R RN TR PR R RS R RN

a) p+(2-3i)(l+5)=p+(2-3i+10i-15i) = Expand the brackets and simplify.

=p+7i+17
=(p+17)+7i " Writein the form x + iy.
p+17=0
p=-17 Equate the real part to 0 and solve to
find p.
b) 4x +4iy = -2y - 3ix— 15 - 10i b
4x + 4iy = (=2y - 15) + (=3x — 10)i «———————— Collect the real parts and the imaginary
Comparing real parts, 4x = -2y — 15 parts on the RHS.
Comparing imaginary parts, 4y = —3x — 10
4x+2y=-15 (1) < Solve the simultaneous equations.

3xtdy=-10 (2) -

2 x equation (1) — equation (2):
5x=-20

x=-4

Substituting x = —4 into equation (1):
4x-4+2y=-15

y=05

x=-4,y=05

Complex numbers
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Example 6

The complex number 3 + 2i is a root of the quadratic equation z2° - (5 + 2i)z + a + bi= 0,
where a and b are real.

a) Find the values of @ and b.

b) Fxplain why the two roots are not complex conjugates of each other.

---------------------------------------------------------------------------------------------------------------

a) Asz=3+2iisaroot,

. Substitute for z in the equation.
(3+21)-(5+21)(3+21)+a+bi=0
(9+12i+4i") - (15+ 16i+4i*) +a+bi=0 <« Expand and then simplify.
—6-4i+a+bi=0
6+a+(-4+b)i=0 Compare the real part on the LHS
with the real part on the RHS, and
-6+a=0and-4+b=0 < ~ similarly compare the imaginary
parts.

a=6b=14

b) 'The coefhcients of the quadratic equation 2> — (5 + 2i)z+ a + bi= 0
are not all real so the roots will not be complex conjugates.

We have seen that the square roots of a negative number can be expressed as

imaginary numbers, that is, the solutions of 22 = —a are z = +/a i.

We can use the method of comparing real parts and imaginary parts to
find the square roots of a complex number, a + bi.

Example 7 demonstrates how we do this.

Example 7

Find the square roots of the complex
number 7 — 24i.

As with any other number we expect to get two square roots
of any complex number.

'To find the square roots, solve the equation

z? = 7 — 241, where z = x + iy, where x and y are real.

(x+ip)=7—24i <« OSubstitute x + iy for z.

X+ 2xyi+ 177 =7 - 24i < Expand the bracket and simplify.

X+ 2xyi-y=7-24i

xr®-y=7 (1) <« Compare real and imaginary parts to get

2xy = -24 ) simultaneous equations.

P> Continued on the next page
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From (2) y = _712 and substitute for y in equation (1):
i [—_12]2 =7 - Eliminate one variable fo get a quartic
x I equation in x.
2o 4o
2
X
. Solve the equation to get the possible
x'-144=7x
/ values of x.
x'-7x*-144=0 -
(- 16)(x*+9) =0 a—
x* =16 or x* = -9, but x is real so x = +4 only.
Substitute x = 4 and x = -4 into (2):
y= z12 =>y= ¥3
4 . Find the corresponding y values.
x=4,y=-3orx=-4,y=3
The square roots of 7 — 24i are 4 — 3i and -4 + 3i. Note that these square roots may be
written in the form (4 — 3i).

Exercise 11.3A
1. Find the square roots of the following.

a) -400 b) -60 c) -3+4i
d) 3+4i e) -5+12i £) 21 +20i
g) -21-20i h) 35-12i i) 36i

2. a) Find the square roots of 3 - 4i.
b) Hence, solve the equation 2> + (2 + i)z + 21 = 0.

15

3. Solve the equation z + 2z* = T
1

4. Express the square roots of i and —i in the form x + iy, where x and y are real.

5. Solve the following equations.
a) 22=25i b) 22=-16i ) 32+12=0
6. Find the real numbers a and b which satisfy the equation (2 + 3i)(5 + bi) = a + 11i.

7. 'The complex number z is defined by 2771 =1+i
z+1-2i

Express z in the form x + iy , where x and y are real.

8. Solve the equations, expressing your solutions in the form x + iy, where x and y are real.
a) z=iz+1 b) Z2=iz+1

9. Solve the equation (4 + 5i)z - (1 + i)z* = 15 + 7i, expressing z in the form x + iy,
where x and y are real.

10. Given that (a - 3i)* = 16 — bi, where a and b are real, find the values of a and b.

Complex numbers




We now turn our attention to solving polynomial equations involving solutions
which may be complex numbers.

We saw earlier in this chapter that if one root of a quadratic equation with real
coefficients is complex then the other root will be its conjugate. We now extend
this result to any polynomial with real coefficients.

If z = x + iy is a root of a polynomial equation with real coefficients,
then z* = x — iy is also a root of the polynomial equation, where z* is the

complex conjugate of z.

This result means that the number of complex roots of a polynomial equation
with real coefficients will always be even.

Example 8
Given that 2 + 1 is a root of the equation z° — z° - 7z + 15 = 0, find the other two roots.

S P R R R PR RN R Y

Since one complex root is 2 + i and the coeflicients of the equation are all real, the conjugate
2 —iisalsoaroot.

[z-(2+1i)][z - (2 - 1)] is a factor.
Z2-Q2+1)z-2-1z+(2+1)(2-1)

Write down the product of the known factors.

Z—4z+(4+2i-2i - 1) < Multiply out and simplify.
z* — 4z + 5isa factor.
To find the third root (which must be real),

z* - z* - 7z+ 15 = (linear factor) x (z* - 4z + 5) In this case, we can find the other factor by

By considering the term in z* and the constant term, inspection. An alternative method is to carry
out a long division of

(z2—z2—T7z +15) by (22— 4z + 5).

we can see that the linear factor must be (z + 3).

The other two roots are -3 and 2 — 1.

Exercise 11.3B
1. A cubic equation with real coefficients has three roots. Two of the roots are
2and 1 ++/3i,
a) Write down the third root.
b) Find the equation which has these three roots. Write it in the form
a2+ b2+ cz+d=0.
2. a) Find the roots of the equation z* - nW2z+4=0, giving your solutions
in the form x + iy, where x and y are real.

b) Showing all your working, verify that each root is also a root of the
equation z* - 256 = 0.

Solving equations involving complex numbers



3. Solve the following equations, giving your solutions in the form x + iy,
where x and y are real.
a) (z+2i)=-9 b) Z=(z+1i) ¢ Z=(z+1i)
4. Solve the simultaneous equations
3z+w=11 2iz+5w=_8 - 91
5. Solve the simultaneous equations
(L-i)z+iw=7+4i iz+(1-1)w=-7-3i
6. a) Write down one solution of the equation z° = 1.
b) Hence write down one factor of z° - 1. c) Solve the equation 2> - 1 = 0.

7. Solve the equation z* = 27.

8. 'The complex number u is defined by u = (1 + i)*.
a) Express u in the form x + iy, where x and y are real.

b) Solve the equation z* = -4.

9. The complex number 5 + 2i is a root of the equation 2z° - 152> + 8z + 145 = 0.
Find the other roots.

10. a) Verity that -1 + 2i is a root of the equation z° + z — 10 = 0.
b) Find the other two roots of the equation.

11. a) Verify that 2 + 3i is a root of the equation z* - 42° + 122° + 4z - 13 = 0.
b) Find the other roots of the equation.

12. The polynomial x* + 2x* + 10x* + x + 10 is denoted by p(x).
a) Find a real root of the equation p(x) = 0.
b) Showing all your working, verify that i is a root of the equation p(x) = 0.
c) Find all the roots of the equation p(x) = 0.

11.4 Representing complex numbers geometrically

Im

Any complex number z = x + iy can be represented by using a ey
two-dimensional set of coordinate axes where the horizontal axis is 4_
used as the ‘real axis’ (Re) and the vertical axis is used as the 5

‘imaginary axis’ (Im).

So, for example, the complex number 3 + 2i is represented by the

point (3, 2), as shown in the diagram. L e —

Complex numbers | =&t



Such a diagram is called an Argand diagram and is named Im
after the Swiss mathematician Jean-Robert Argand
(1768-1822).
It follows that the point representing z* = x - iy g
is the reflection in the real axis of the point
representing z = x + iy. >
& Re
The position of the point representing z*, the complex JF
conjugate of z, on the Argand diagram is found by reflecting
the point representing z in the real axis.
Example 9
u=2-3i
On a sketch of an Argand diagram, show the points representing the complex numbers
w, u*, v u+ ut, u - ut, uu* and %.
{71
w'=2+3i < (alculate the complex numbers listed.

12 =(2-3i)2-31)=-5-12i
u+ur=02-3)+(2+3i) =4
u—1*=(2-3i)- (2 +3i) = -6i

u* = (2 = 3)(2 + 3i) = 13

w _2-3 2-3i _-5-12i _ 5 12

—= = = =
s 2ai 3 3 13 13 13
i _— Draw the axes and plot your answers. Label
- them clearly.
u&
31 x
-5
EEY u+u* uu*
T T 0 T " ‘I" >
-5 Zx 412 2 4 13 Re
13
=37 xY
u-u*
-6
u?
X ~12+
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We will now consider how to represent the addition and subtraction of Im
two complex numbers on an Argand diagram. To do this, it is helpful

to consider the complex number z = x + iy as a point in the Argand

x
diagram with position vector
24

Ifz =a+iband z, = c +id, then
z, +z,=(a+1ib) + (c +id)
=(a+c)+i(b +d)

The point representing z, + z, can be constructed by adding the
vectors representing z, and z ; that is, the point representing
z, + z, can be found by drawmg the diagonal of the parallelogram

Re

z, +z=(c1+c)+i(b+d)

c+|d-—?' /’
z+2;v

// il a+|b

formed by the vectors representing z and z,. This is illustrated on
the diagram.

Similarly,
=(a-c)+i(b-d)

The point representing z, - z, can be constructed by adding the
vectors representing z, and -z,, then drawing the vector representing
z, - z, from the origin.

zZ -

We will look at how we can represent the multiplication and division
of complex numbers geometrically later in the chapter. However,

at this point, it is worth considering what happens when we
multiply a complex number by i.

If z=x+ iy, then iz = i(x + iy) = ix - y, and so the point (x, y)
representing z is mapped onto the point (-y, x). The diagram

shows that this is equivalent to a rotation of 90° anticlockwise

o' Re

about the origin.

Multiplying a complex number z by the imaginary number i is
geometrically equivalent to rotating the point representing z by 90°

anticlockwise about the origin.

Exercise 11.4
1.
complex numbers 2 + 3i, -1

- 4i, 3 — i, and 5 + 0i respectively.

The complex number u is defined by u = 5 + 3i.
Show, on a sketch of an Argand diagram, the points B, Q, R, and

S representing u, 1*, 2u, and —u respectively.

Sketch an Argand diagram and show the points A, B, C, and D representing the

Complex numbers




3. Write down the complex numbers z, z,, z,, z,, z,, z,, and z, represented
on the Argand diagram by the points A, B, C, D, E, F, and G
respectively.

ImaA
6_

K=

|

&
[ -
o
A3
I

o
o
! -
i
o
5o
o
w-
-
e
o

Re

4. The complex number w is defined by w = (2 + 1)

a) Express w; iw, ¥ and 25141 the form x + iy, where x and y are real.
i w

b) Sketch an Argand diagram and show the points A, B, C, and D

representing w, iw, -, and 2t respectively.
1 w

5. 'The complex numbers z, and z, are defined by z = 3 +iand zz, = -11 + 13i.

a) Find z, expressing your answer in the form x + iy, where x and
yare real.

b) Show;, on a sketch of an Argand diagram, the points representing

Z»Z, 22, and izz,

6. 'The complex numbers z and w are given below.

In each case, sketch an Argand diagram to show the positions of
zZ,w,z+ w,and z — w.

a) z=4+2i,w=1+3i b) z=2+5,w=-4+i
¢) z=-5-3i,w=2+3i d) z=3-4i,w=1+i

7. The complex number z is defined by z =2 - 2i.

Show, on a sketch of an Argand diagram, the points representing z, Landz+ L.
z

z
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11.5 Polar form and exponential form

As we know, the position of a point can be described by using
the Cartesian coordinates (x, y) and this can be plotted on a
set of coordinate axes.

Alternatively, we can describe the position of a point by giving
its distance from the origin (r) together with the angle that
the line joining the origin to the point makes with the

positive x-axis (6 radians).

This way of describing the position of a point is called
polar coordinate form. Polar coordinates are written in
the form (r, 8) where r>0and -7< 0 < 7.

As we saw in section 11.4, complex numbers expressed in
Cartesian form (x + iy) can be plotted on an Argand diagram. We
can also represent complex numbers in polar form. This is more
commonly called modulus—argument form when it is being used
with complex numbers.

The modulus of a complex number z, written as |z|,
is the length of OP, where P is the point representing
the complex number on an Argand diagram.

The argument of a complex number z, written as arg(z),
is the angle (0 radians) between the line 8 = 0 and OP.

Hence, r =/x* + y* and tan 6 = z,
X

Also,x =rcos@and y = rsin 0.

From the diagram we see that x + iy = rcos 8+ irsin @ = r(cos 8 + isin 6).

x+ iy = r(cos 0 + isin 0)

Ima

Z=X+iy

Iy

6 may be defined in
the interval-mr< 6<
or alternatively in the
interval 0 < 8 < 2.

h

P(r, 6)

Any complex number can be expressed in Cartesian form as
Z=x + iy or in modulus—argument form as z = (r, ).

Use r=4/x’+ y* and tan @ = 2 to convert from Cartesian to
modulus-argument form.

Use x = rcos @and y = rsin 0 to convert from modulus—-argument
form to Cartesian form.

Notes:
r>0,—-r<0=<m

Care needs to be taken
to make sure you give
the correct argument

for a complex number.
Always sketch a diagram
to check.

Complex numbers




Example 10
a) The complex numbers z, and z, are defined by z =1 +iand z, = -2 - 4i.

Find the modulus and argument of z and z,.
b) The complex numbers Z, and z, are defined by z,= (5, %) and z,= (2, 5?”)

Write z, and z_ in the form x + iy, where x and y are real numbers.
a) |z|=VIE+1*=+2=141(3sf) mp
arg(z,) = tan™ G) = % =0.785 (3 s.f.)

|2, = (2> + (4)° =20 = 4.47 (3 5.£) 2

o
on
[
N
5]
e "
\

hesssssn sescssesans D T T Y sssssssse ssssnse ssessssssssnn

arg(z,) = —[n’ —tan™ (%)] =-2.03 (3s..)

-~ L
R

3

It can be useful to sketch a diagram.

h
b 5
b) z3:5(cos£+isin£):§+ﬁi:2.5+4.3si 2, 6 x
3 3 2 2 3 g
z4=2(cos5?"+isin5?”)=—~\/§+1i=-1.73+i g

Exponential form is similar to modulus-argument form. A complex
number is said to be in exponential form when it is expressed in the
form re', where r is the modulus and 8 is the argument.

The derivation of this form is beyond the Cambridge International 9709
syllabus.

For example, the following are all different forms for the same complex number:

(1) L +1 Cartesian form (or real-imaginary form)

(2) (\E, %) = \E(cos % + 1 sin%) polar form (or modulus—-argument form)
3 \/EeiE exponential form.

Polar form and exponential form




A complex number written in the form re*?, where r is the modulus and
0 is the argument, is said to be in exponential form.

Expressing a complex number in the form r(cos 8 + i sin 8) = re'® can help
us to multiply or divide two complex numbers more easily.

To show why this is, consider the two complex numbers
z,=(r,0)=r(cosB +isin)andz, =(r,0)=rcos6 +isinb).
z, xz,=r(cos +isin6)xr (cosB, +isinb)

=rr,(cosB +isin6 )(cos @, +isinb)

r.r(cosB cos B, +isinB cosO, +isinB cos O +i*sin6 sind)

r.r,((cos 6, cos 8, — sin 6 sin B)) + i(sin B, cos O, + sin O, cos 6 ))

=r r,(cos(6 + 6, +isin(6, + 6,))

So, to multiply two complex numbers in polar form, we multiply their moduli
and add their arguments.

Ifz =(r,0)and z,=(r, 0,), thenz z,=(r,r, 0, + 6,).

1 b

A special case of this can be used to find powers of a complex number.

Ifz =(r, 0), then z" = (1", n6).

One advantage of writing a complex number in exponential form is that much
of our work can be written more concisely. For example, the proof above
can be rewritten as

_ e i6,
z,z,=re% xre®
— ;7 eilB+6)
et
Similarly, if we use this notation to divide two complex numbers,

i,
z, e n oy
T T
Z; e - £

6,-6,)

So, to divide two complex numbers in polar form, we divide their moduli
and subtract their arguments.

Z) n
Ifz,=(r, 6, and z,= (r,, 6), then = (71, 6, - 6,).

2 2

This proof using z, = (r, 8) = r (cos 6, +isin6 ) and z, = (r,, 8,) = r,(cos 6, +isin 6))
is left as an exercise.
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Example 11
The complex numbers z and w are defined by z =2 + 2iand w=—-1 + J3i.

Find the modulus and argument of

2

a) 2 b) 2 o Zw d) X
Z
_ by
a) Z—(Z‘Exz <+ " Write z in modulus—argument form.

——— Use (r, 6)% = (r2, 26) and simplify.

|2?| = 8, arg(z?) = %

A

Use (r, 6)* = (r?, 38) and simplify.

b) 2= {(2\6)3, 3x l} = (16J5, 3—”)
4 4
3
Z|=16v2, 7)==
=1 J_ arg(z’) 4 Alternatively, exponential form notation may be used.
For example, z = 22 *

zz=(2~./567)

c) w= (2, 2—’7) :
= 8e ? efc.

Find w2 and use your answer for z2 from part (a).
Use (r,, ) x (r, 6) = (r, T, 6, + 6).

6 ~ Write arg(z) so it lies between -z and 7.

Z

w 4r 3w \E 71:],
it 3 el T e 8
z 15\/_ se o) 40— B)and5|mpl|fy
wi|_ V2, (w)_ 7 —
2| 8 ’arg[f] 12

We now turn our attention to understanding the geometrical effect of
multiplying and dividing two complex numbers.

If we take a complex number, say z, = (r, 8,), and multiply it by a second 722
complex number z, = (r,, 8,), thenaszz = (r, 6) x (r,0) = (r,r,0,+ 0)), e /

we see that the effect of multiplying one complex number by another is %

equivalent to multiplying the modulus of z, by the modulus of z,. This is o are(z,) =6,
equivalent to an ‘enlargement’, centre the origin and scale factor (r,) equal to //;%q/‘"i’ 1 .
the modulus of z,. Using the same result, we can see that we add the argument 0 i 9=0

of z, to the argument of z, This is the equivalent of a rotation (anticlockwise)
about the origin through an angle (8,) equal to the argument of z,.
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The combined effect of these two aspects results in what is often x4
referred to as a spiral enlargement. /
Dividing one complex number by another can be interpreted in a n/ .
similar way, though the enlargement scale factor will be Land 6, n i—;
the rotation will be clockwise by an angle 6,. & ;M; ) i
0 8=0

Exercise 11.5
1. Find the modulus and argument of the following complex numbers.

a) 1 b) -1 o 1+i d 1-i

e) 3i f) 5+12i g) 13 -6i h) %+%1
2. z=14+13;

2 2
Find the modulus and argument in each case.
a) z b) z* < 7z d) (z4)? e) (2)*
3 ) 1 i 2

f) z g h) z2+2° i) = i) —
3. z=4+3i

a) Find i) [ i) |2 iii) |2|.

b) Find i) argz ii) argz? iii) arg 2°.
4. Write the following complex numbers, z, in the form x + iy.

a) |z] =2,arg(z) = g b) |z| =5,arg(z) =7 ) |z| =4,arg(z) = %

d) |z =3, arg2) = £ €) |zl =10,arg(s) = f) | = % arg(e)=- 2

g) |z| =1, arg(z) = 7377{ h) |z| =6, arg(z) = 2?” i) |2/ =7, arg(z) =0

5. Show, on a sketch of an Argand diagram, the points representing the complex
numbers in question 4.

6 weTiimws i =43

Find the modulus and argument of

a) wz b) % ¢ iz d) A=,
z w*
7. Write the following complex numbers in the form x + iy.
a) e” b) e ? c) 4det
8. Express in the form re®.
a) 1+i b) -3 o) —1+2i
d) 7i e) 6+8i f) 6-8i

g —2-+ai h) V2(5 - ) i) +§i

b | —
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9. Ifz =2{cos™ +isinZ ,2,=3 cos”™ +isinZ), and z. = 2[cos™ +isinZ),
5 6 6 = 3 3 3 4 4
find, in modulus-argument form,
a) zz, b zzz, g L d) z2
10. The complex numbers z and w are defined by
|z| =3, arg(z) = %and |w| = 2, arg(w) = %

Find the modulus and argument of

a) 7° b) 2 o z d) 2 e) zw
f) zw? g) (zw) h) = i) zi ) owwt
K w-wt ) ——

(wz)*

11. The complex number z is given by z = x + iy.
Prove algebraically that
a) z+z*=2Re(z) b) z—z*=2Im(2)i <) |Re(2)|<|z|-

12. Tllustrate each of the results from question 11 on a separate sketch of
an Argand diagram.

11.6 Lociin the Argand diagram

In this section we will see how we can illustrate simple equations and inequalities
involving complex numbers as loci in an Argand diagram.

In particular we will consider the locus of z (where z is a variable complex
number) in the following three cases, taking into account how the locus
changes if the = sign is replaced by an inequality sign.

Case 1 lz— z,l = r, Where z, is a known complex number and r is real

|z - z,| is the modulus (or length) of z - z,.

In section 11.4 we saw that z — z, can be Im A

represented as the vector joining the point P

z, to the point representing z. So |z - z,| =7 / \2_21‘ =r
represents the locus of a point z such that z ( il

moves so that its distance from a fixed point "\ "

z, is always r. N

z lies on a circle, centre Zs radius r.

If |z - zll = r, then z lies on a circle, centre Z, radius r.

We can also see that if |z - le < r, then z lies anywhere inside a circle, centre Z, radius r;

and if |z - le > r, then z lies anywhere outside a circle, centre Z, radius r.

Loci in the Argand diagram

F 2



Example 12

that satisfy the equation |z — 1 + i| = 2.

a) Sketch an Argand diagram and show all the points which represent the complex numbers z

lz-(2+3i)| <2

z lies inside or on the circumference

of a circle, centre 2 + 3i and radius 2.
|z-4|>3

z lies outside a circle, centre 4 + 0i

and radius 3.

The set of points which satisfies both
conditions lies in the shaded region and
on the part of the circle, centre 2 + 3i,
which is shown with a solid line.

b) The points in an Argand diagram representing 2 + 5i and —6 + i are the ends of a diameter of a
circle. Find the equation of the circle, giving your answer in the form |z — (a + bi)| = k.
a) [z-(1-1)=2 - Write the equation in the form |z - z | = r.
z lies on a circle, centre 1 — iand radius 2.
Imap
24
i
T T 7 r |\ T T T ‘;
-2-{0 1 2 5 4 5 Re
1 A
\ S
D
= m_//
b) The centre of the circle is given by < Qse _th.e _result thatthe mid-point OT the
line joining (x,, y,) and (x,, ¥,) is given by
(2+-6)  (5i+1) . ‘
= =—2+3i {% W—J’?} and that the length of
The radius of the circle is given by the line joining (x,, ) and (x,, y,) is given by
1 1 5 2
V627 +1-57} = 180 =245 NG =) +(n = 0).
The equation of the circle is [z - (-2 + 3i)| = /5.
Example 13

Sketch an Argand diagram and shade the region whose points represent the complex numbers z
which satisfy both the inequality |z - (2 + 3i)| < 2 and the inequality |z - 4| > 3.

---------------------------------------------------

Im
8- Note that the circle touches the
7- y-axis. This should be clearly
6 shown on your diagram.
5
4- \\
3- e T
1 e s
: o
r T T 1 T T T T T T T >
3219 19 34567 8he
2 N ¢
u el
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Case 2 |z-z | =z~ z,| where z, and z, are known complex numbers  'm z

X %
Here the locus of z is such that its distance from the fixed B e P
><§|z 2| =1z-z,)]
point z is equal to its distance from the fixed point z,. z will g
therefore lie on the perpendicular bisector (or mediator) /// "% 7,
of the line joining z, and z,. o 7 o

If |z - z | = |z - z,|, then z lies on the perpendicular bisector of /
the line joining z, to z,.

We can also see that if [z - z | < |z - z,|, then z lies anywhere in the region on
one side of the perpendicular bisector of the line joining z, to z, such that
the distance from z to z| is less than the distance from z to z,.

Example 14
a) Sketch on an Argand diagram the loci given by |z - (1 + 2i)| = 5and |z - 5 + i| = |z + 3 - 5i].
b) Show that these loci intersect at the point -2 — 2i.
a) |Z—(]+2i)|=5 e |z-5+i| =|z+3-5i]
z lies on a circle, centre 1 + 2i 5 S
and radius 5. ' //é_i—____ﬁ_\\- 5
lz-5+i| = |z +3 - 5i| P! AN
|z- (5-1)| = |z - (-3 + 5i)| / o \\
z lies on the perpendicular bisector of [ i I u
o : . 2 |
the line joining 5 — i to —3 + 5i. 2= (1 +20)] =5|\ N | J
b) The loci will intersect at -2 — 2iifz= -2 - 2i e ———————>
: : 65-432-4 123 45678k
satisfies both equations. /H o
s 25
When z= -2 - 2j, | T
|z2-(1+2i)|=]-2-2i-(1+20)] _ / 44
= |-3 - 4i| S )
— 5 \ -6
so |z - (1 + 2i)| = 5 is satisfied. . Substitute z = —2 - 2i into the left-hand side of
Whet z= -2 2i, the equation.
|z-5+i|=|-2-2i-5+i| e—
— 7 A ~ Subsfitute z = —2 — 2i into each side of the
52l
___— equation in turn.
= /50 e
Also |z+3 - 5i| = |-2 - 21 + 3 - 5i| = |1 - 7|
=+50
so |z-5+i| = |z + 3 - 5i| is satisfied.
Both conditions are satisfied and so these . \ake a clear statement in conclusion.
loci intersect at the point —2 — 2i.

Loci in the Argand diagram




Case 3 arg(z- z,) = 6 where z, is a known complex number
and @ is an angle, measured in radians z

As we saw earlier in this chapter, the vector z - z, can be represented 4
by the vector joining the point z, to the point representing z. We can S el
interpret arg(z - z,) = 0 as the line joining z, to z having argument 6.

The locus of z is therefore a half-line, starting at z , at an angle 6 with A
the positive real axis. It is called a half-line as we only want the
part of the line which starts at z, but which has an infinite length.

If arg(z - z,) = 6, then the locus of z is a half-line, starting at z , at

an angle 6 with the positive real axis. 0 0-0

Example 15
a) Sketch on an Argand diagram the locus of the complex number z where z satisfies the

equation arg(z + 2 - i) = 2??[

b) On the same diagram, shade the region whose points represent the complex number z
which satisfies % Sarg(z+2-1i) < ZTN
2 2
a) arglz-(-2+i)}= ?ﬂ: - - Write in the form arg(z - z,) = 6.
zlies on a half-line, starting at -2 +1, _ \dentify 2, and 6.

making an angle 2% with the positive

. =)
real axis. »
Im 4 \-\
N\
N\
N\
\
N 2 \
arg(z+2-i)=— 2n
3 \—3 \
BN - R
é“-_\ Draw a clear diagram. It is helpful to write a description
'2 ™0 ‘Re to accompany your diagram.
b) z may lie anywhere in the shaded region or on ImA
its boundaries.
. b
arg(z+2—l)—5
arg(z+2—i)=2—x 2n
e ~\3
2 S g e
SR Re
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Example 16

a) On a sketch of an Argand diagram, shade the region whose points represent the complex
numbers z which satisfy the inequality |z + 4 — 43 i| <4.

b) i) Find the least value of |z| in this region.
ii) Find the greatest value of arg z in this region.

A EREEEEREEEE RN N R R R L R R R R R R R L A R R R R R R R R N R R R R R
a) |z-(-4+4+30)| <4
z lies on or inside a circle,

centre (—4 + 4\/51) and radius 4.

b) i) The least value of |z| is given by the

length OP on the diagram. e
OP =0C - PC 4

2 2 #
But OC* = 4% + (443 ) =16+48=064 « - Use Pythagoras’ theorem on triangle OBC.
SoOP=0C-PC=8-4=4 _
Least value of 2] is 4. " Use PC=4asitis a radius of the circle.

ii) The greatest value of arg z is given by the angle
OA makes with the positive real axis.

Angle COA = sin‘l(%J = sin-l[ij ==
ocC

8 6
The greatest value of arg z is % + % - % = 5?” “+ Angle COA = angle COB = %

Exercise 11.6
1. On separate sketches of an Argand diagram, show the locus of the
complex number z which satisfies
a) |z]=1 b) [z-3|=1 ¢) |z+5/=2
d) |z-(2-2i)<2 e |z+(L+30)|21
f) |z - a| = a, where a is a positive real number.
2. a) Express, using modulus notation, the equations of the following
circles on the Argand diagram.

i) centre0,radius3  ii) centre 2 + 2i, radius 2 iii) centre -4 - 3i, radius 5
b) On separate sketches of an Argand diagram, illustrate these circles.

Loci in the Argand diagram



10.

On separate sketches of an Argand diagram, show the locus of the complex
number z which satisfies the following.

a) afg(z—l):% b) arg(z+l):%

Q) arglz+i)=-2 d) arglz-(2+30)} = 2%

On separate sketches of an Argand diagram, show the locus of the complex
number z which satisfies the following.

a) |z =|z-5]

b) |z+i| =]z - 7]

c) |z+4|=|z-2i|

d) |z-(2+2i)|=]|z-(-2-2i)

e) |z-5-2i|=|z-1-2i

Show, by shading on separate sketches of an Argand diagram, the region

whose points represent the complex number z which satisfies the following.

a) ESarng% b) OSarg(zfi)S%

-

€)

Show, by shading on separate sketches of an Argand diagram, the region

Sarg(z—2)£2?“JT d) —%Sarg{zf(5+3i)}sg

whose points represent the complex number z which satisfies the following.
a) |z-6/<3

b) |z-(1+3D)|=1

c) |z-3|2|z—-1]

d) [z-i|2|z+1]

e) |z+(1+1)|>|z-3-3i

f) |z-2+3i| <|z-2i

Sketch in a diagram the region described by |z — 2| <2 and _% <argz < %

Sketch in a diagram the region described by |z| < 3 and |z| > |z — 4].

a) On a sketch of an Argand diagram, shade the region whose points represent complex
numbers satisfying the inequalities |z | < 4 and Re(z) = Im(z), where Re(z) and Im(z)
denote the real and imaginary parts of z respectively.

b) Write down the greatest and least values of |z].

a) On a sketch of an Argand diagram, shade the region whose points represent complex

numbers satisfying the inequality |z - 5 - 2i| < 2.
b) Calculate the greatest value of |z|.
¢) Calculate the greatest value of arg z.

Complex numbers




[S‘ummary exercise 11

T

L

m

!

Find the values of x and y, where x and y are
1 _ 445
x+iy 6-3i

real, if

a) Show that the two roots of the equation
zZ* + 2z + 10 = 0 have the same modulus.

b) Find the argument of each root of the
equation z* + 2z + 10 = 0.

a) Show that I, —% + %i, and ! - gi are :
2 :

all solutions of the equation z° = 1.

J3 1, 3

b) Hence find

giving your answers in the form x + iy.

]

CTEH M ;.—-T

XAM-ETHLE QUES

peed

Fibd
£33

y are real.

that z* — pz is real.

Two complex numbers, z and w, satisty the

the locus of the complex number z and
the locus of the complex number w.

b) Find the least and greatest possible
values of [z — w|.

Show that, for any complex number z,

zz* + 2(z + %) is real.

TIONS

w1l =

KAM-STHLE QU

im
iy

a) Solve the equation z> + 5z + 4 = 0.

a) Sketch in a diagram the locus of the
complex number z described by

|z + 3 + 12i] = 3J17.

Summary exercise 11

4 ¢ 5
LByl anal LBy
2 2 2772 L1

The complex number z is given by z =1 — NG
a) Express z’ in the form x + iy where x and
‘12
b) Find the value of the real number p such

a) Ona sketch of an Argand diagram, show

b) Hence solve the equation z* + 5z + 4 = 0.

: 10.

: 13,
inequalities |z —3 - 3i| <2and |[w+ 1 +i| < 1. :

§ 14.

:15.

b) Calculate the greatest and least values of
|2| for this locus.

a) Sketch in a diagram the locus of the
complex number z described by |z — 5i| = 3.

b) Calculate the greatest and least values of
|z| and arg z for this locus.

Two complex numbers z and w satisfy

the inequalities |z — 3 — 5i| < 2 and

|w —7 - 10i| < 2. Draw an Argand diagram

and find the least possible value and the
greatest possible value of |z — w|.

a) Verify thatz=1 + iis a root of the
equation z* - 62° + 237% - 34z + 26 = 0.
b) Write down another root of this equation.
¢) Find all the roots of the equation
z' -6z +2322-34z+26=0.
2 - \Ei is a root of the equation

z'+42° - 20z° + 60z + 27 = 0.
Find the other roots of this equation.

a) Verify thatz= 1 + 2iis a root of the
equation z* - 3z° + 7z - 5= 0.
b) Solve the equation completely.

An equilateral triangle has its vertices on the
circle |z| = 3. One vertex is at the point such

that arg z= % Find the three vertices of the

equilateral triangle, expressing your answers
in the form x + iy, where x and y are real.

The complex number w is given by
W= _l + ﬁl
2 2

a) Find the value of w?, expressing your
answer in the form x + iy, where x and y
are real.

b) Verify that w* = w.



¢) i) Write w and w’ in modulus—argument
form.
ii) Explain, using an Argand diagram,
why 1l +w+w? =0,

16. a) Use a sketch of an Argand diagram
illustrating the addition of the two
complex numbers z, and z, to show that

|z, + 2| <|z,| + |7,

b) Use a sketch of an Argand diagram
illustrating the subtraction of the two
complex numbers z and z, to show that

|z, -z 2]z| - |2
(z-2)

(z+2-3i)
giving your answer in the form z = x + iy

17.a) Solve the equation =1-i,
where x and y are real.

b) i) Sketch an Argand diagram showing
the set of points representing the
complex numbers z which satisfy arg

T
(2—3)=;

ii) Arg(z-3)= % Find the least value
of |z].

18. i) Verify that the complex number z =1 +1i1is

a root of the equation 2z° - 3z + 2z + 2 =0.
ii) Find the other two roots of this equation.

iii) Sketch an Argand diagram showing the
set of points representing the complex
numbers z which satisfy |z| = [z - 1 - i].

19. z = -3 + 4i is a solution of the equation 2* +

cz+25=0.
i) Find the value of c.

ii) Write down the other root of the
equation.

iii) Write z, in modulus argument form
giving arg z, in radians correct to
2 decimal places.

iv) Show, on a sketch of an Argand diagram,
the points A, B, and C representing the
complex numbers Z,2% and zZ, +z*

Complex numbers




Introducing complex numbers
V=1 = iand therefore i = ~1.
A number of the form a + bi, where a and b are real and i? = -1, is called
a complex number.

The complex conjugate of z = a + bi is z* = a — bi, where a and b are
real numbers.

Calculating with complex numbers.
To add two complex numbers we add their real parts and add their
imaginary parts.
To subtract two complex numbers we subtract their real parts and subtract their
imaginary parts.
To multiply two complex numbers we use the normal rules of algebra and simplity the
answer using i* = —1.
To divide two complex numbers we multiply the numerator and the denominator of the
fraction by the complex conjugate of the denominator.

Solving equations involving complex numbers

Two complex numbers are equal if both the real parts are equal and the imaginary
parts are equal.

If z= x + iy is a root of a polynomial equation with real coeflicients,
then z* = x — iy is also a root of the polynomial equation, where z* is the
complex conjugate of z.

We can use the method of comparing real parts and imaginary parts
to find the square roots of a complex number, a + bi.

Representing complex numbers geometrically on an Argand diagram

The position of z*, the complex conjugate of z, on the Argand
diagram is found by reflecting z in the real axis.

Im 4




® z +z,canbe represented by drawing the diagonal of the parallelogram
formed by adding the vectors representing z, and z,.

mA Z,+z,=(a+c) +ib+a)

o The points representing z, - z, are constructed by adding the vectors representing
z, and -z, then drawing the vector representing z, — z, from the origin.

Im A
ctid
S
*""
__Xa+ib
/'/ /‘
.-‘TZ /(
1 ¥ -z, -
= ] =
0 e Re
~x

21—22:(a—c)+i(b—d)

» Multiplying a complex number z, by the imaginary number i is geometrically
equivalent to rotating the point representing z by 90° anticlockwise about

the origin.
Im A
Z=x iy

. : 4
iZ=-y tix ]

¥ 2

: // |

I J :

: 4 L

-y 0 X Re

Modulus—argument and exponential forms

® Any complex number can be expressed in Cartesian form as z = x + iy
or in modulus-argument (or polar) form as z = (r, ).
o For modulus-argument formr>0and -r< 0 <

o User=,/x"+y’ andtanf= %to convert from Cartesian to

modulus-argument form.

Complex numbers




e Usex =rcosBand y= rsin 6 to convert from
modulus-argument form to Cartesian form.
® x+iy=r(cosB+isind)

A

o A complex number written in the form re*?, where r is the modulus

and 0 is the argument, is said to be in exponential form.
e Ifz =(r,0)andz,=(r,0),thenz z,=(rr, 0, +0).

150k

5 Ile = (rl, 91) and z,= (rz, 92), then :—1 = (

)

h
ﬁqf@.

r

Loci in the Argand diagram

o If|z-z|=r, then zlies on a circle, centre z,, radius r.

Ima
/Ff\lz—zl} —
i \
X _ ||

\_

e If|z-z]=|z -z, then z lies on the perpendicular bisector of the line joining
z toz,.

Im A

X

.
¥, lz-z;| = |z- 2]

N
~

%Iy

Y

Chapter summary




o [Ifarg(z - z) = 6, then the locus of z is a half-line, starting at z , at an angle 6 with the
positive real axis.

Im 4

o Inequalities may be represented by shading appropriate regions on an Argand diagram.

Complex numbers | =&



Maths in real-life

Electrifying, magnetic and damp: how
complex mathematics makes life simpler

If you think of complex numbers in the Argand diagram,
you can appreciate that the real and imaginary parts

are both separate and interlinked, so it is perhaps not
surprising that they should have applications in physical
situations where there are separate and linked entities.

In electromagnetism, the electric field and magnetic field can be
represented by a single complex-valued field a + bi, where a is
normally the electric field and & the magnetic field. All the devices
shown in these images depend on the use of electromagnetism.

One of the most spectacular applications is in Maglev trains. The Shanghai Maglev train (also known
as the Transrapid) is the fastest commercial train in operation as of 2017. It operates by using magnets
and electric current to levitate the train above a guide-rail and propel it forwards. With conventional
trains there is a lot of friction in the moving parts, but with the Maglev the resistance is almost all
related to air resistance. Although a conventional train is also subject to air resistance, the higher speed
of the Maglev means that air
resistance is much greater. The
future development of even faster
trains looks possible as designers
explore the practicalities of
running Maglev trains in a
vacuum tube where air resistance
would be removed. However,

the economics of these projects
means that, although technically
possible, they may not become
practical realities.




You have met simple first-order differential equations in P3; YA
however, physical situations involving forces are described by 4.

second-order differential equations, where the solutions 34
sometimes require the use of complex numbers. The simplest 2 1
model for a standard spring is that it has no resistance 14
(like a projectile) and so continues to oscillate indefinitely 0
once set in motion. But the reality is that the oscillations will -1 \/ 6”\/ G 10”
die away. In systems like shock absorbers, the designers 24

want the oscillations to die away quickly, so they increase the -3

friction in the system by putting it in a liquid rather than in air. -4~

0.05¢

The motion of damped oscillations looks like the graph above: x = 4e™*% cost

—0.05¢

(shown in green) is bounded by the curves x = +4 €% shown as dotted blue lines.

Changing the physical characteristics of the system can change the frequency

of the oscillations and how quickly they die away, as the following

Y,
diagrams illustrate. 4

YA
4

3_..__..
IR
1 -
0
S5
-24
_3_:’
k7l

Resonance occurs where the opposite effect is seen: the amplitude of the oscillations
grows rather than dies away. Sometimes this is the desired effect but more often it is
destructive: feedback in amplification systems, glasses shattering if a singer exactly
hits the resonant (or natural) frequency of the glass, people walking in step on

a bridge, etc.

The Millennium Bridge in London
had to be closed to the public for
alterations shortly after it opened
when it was found that people walking
on the bridge naturally adjusted their
walk because the bridge had a natural
lateral sway — they adjusted their speed
of step unconsciously to match the
rhythm of the swaying motion, but
this set up resonance and exaggerated
the swaying motion.




Exam-style paper 2A — Pure 2 50/marks

1. a) Sketch the graphs of y = |2x —4| and y = |4x| on the same axes. (2]
b) Use your sketch to solve the inequality |2x - 4| < |4_-x|. (2]

2. Solve the equation
In(64—3x") = 4Inx,

giving your answer correct to 3 significant figures. (4]

3. The polynomial 2x* — 3x* - 24x? + 13x + 12 is denoted by p(x).
a) Find the quotient when p(x) is divided by x* — x — 12. [3]
b) Hence solve the equation p(x) = 0. [3]

4. The curve with equation y = 3% has one stationary point.
&

a) Find the exact coordinates of this point. [4]
b) Determine whether this point is a maximum or a minimum point. [2]
5. a) Given that sin(6 + 45°) = 2sin#, show that tan 8 = 1 [2]

a1

b) Solve the equation
2tan20 — secO =4,

giving all solutions in the interval 0° < @ < 360°. (5]
6 a) Show that(3sinx — cosx)® can be written in the form 5 — 4cos2x - 3 sin 2x. [4]
b) Hence find the exact value of fix(S sinx - cosx)*dx. [4]

[}

7. Find the exact value of % when x = -3 in each of the following cases:

a) y=x2In(x+13) (4]
_ 3-5x
b) ¥= 6+5x 3]

Exam-style paper 2A — Pure 2




YA

\ [R]

N W I
. y=e
\‘..

—

0

P X

The diagram shows the curve y = e, The shaded region R is bounded
by the curve and the lines ¥ = 1 and x = p, where p is a constant.

a)
b)

(4]

Find the area of R in terms of p.
Show that if the area of R is equal to 1, then

3 1 —2p
=—=—=¢
p 2 2

Use the iterative formula

3 1 —2py
==——e"h,
pu+1 2 2

with initial value p, = 1.5, to calculate the value of p correct to 2 decimal
places. Give the result of each iteration to 4 decimal places.

Exam-style paper 2A — Pure 2




Exam-style paper 2B — Pure 2 50/marks

1. Solve the inequality |x| > |x - 1|. (3]

2. Use the trapezium rule with two intervals to estimate the value of

2 d.x,
o d+e”
giving your answer correct to 2 decimal places. (3]
3. Iny
A
(4,5.45)

0,325

0 7

The variables x and y satisfy the equation y = Ab* where A and b are constants.

The graph of In y against x is a straight line passing through the points (0, 3.25)

and (4, 5.45) as shown in the diagram.

Find the values of A and b, correct to 1 decimal place. [5]

4. a) Find the quotient when the polynomial
4x* + 8x7 — 45x + 31
is divided by 2x? + 9x — 5, and show that the remainder is 10x + 6. [3]
b) Hence, or otherwise, factorise the polynomial
4x* + 8x? — 55x + 25 (2]

5. a) FExpress12cosf — 5sin@ in the form R cos(f + a), where R > 0 and 0° < ¢ < 90°,
giving the value of a correct to 2 decimal places. (3]

b) Hence, solve the equation
12cosf — 5sinf = 10,

giving all solutions in the interval 0° < 0 < 360°. (3]
¢) State the least value of 12 cos@ — 5sin 8 as 8 varies. [1]
6. a) Show that J‘I’“(z —cos’x)dx = % (4]
b) Show that J‘r X dr=1In2. [5]
g X +5

p. B Fxam-style paper 2B — Pure 2




a) By sketching a suitable pair of graphs, show that the equation

e =7-2x"

has exactly two real roots. [3]
b) Show by calculation that there is a root between 0.6 and 0.7. [2]
¢) Show that this root also satisfies the equation

x=§ln(7—2x?) (1]

d) Use an iteration process based on the equation in part (c), with a suitable starting
value, to find the root correct to 2 decimal places. Give the result of each step of the
process to 4 decimal places. [3]

'The equation of a curve is

35— 2xy+y*-24=0
a) Show that the tangent to the curve at the point (2, 6) is parallel to the x-axis. [4]

b) Find the equation of the tangent to the curve at the other point on the curve for
which x = 2, giving your answer in the form y = mx + ¢. [5]

Exam-style paper 2B — Pure 2



Exam-style paper 3A — Pure 3 75 marks

1. Solve the equation
7.x+1 — 7.1' + 5,
giving your answer correct to 3 significant figures. (4]

2. a) Expand \/11—2 in ascending powers of x, up to and including the term
—LX

in x3, simplifying the coefficients. (3]
b) Hence find the coefficient of x® in the expansion of Yo [2]
3. The sequence of values given by the iterative formula
4x, 10
x:H—l = 5 +F)

n

with initial value x, = 3.7, converges to .

a) Use this iterative formula to find ¢ correct to 2 decimal places,

giving the result of each iteration to 4 decimal places. (3]
b) State an equation satisfied by & and hence find the exact value of a. [2]
d
4. x?+y*—4xy+ 11 = 0. Find the two exact values of a-ii when x = -3. (6]

5. The polynomial x> — 4x% + ax + b, where a and b are constants, is denoted by p(x).

It is given that (x - 2) is a factor of p(x) and that when p(x) is divided by
(x — 3) the remainder is 4.

a) Find the values of @ and b. [5]
b) When a and b have these values, find the other two linear factors of p(x). [3]

6. a) Express8sinx — 6cosx in the form Rsin(x — ), where R > 0 and
0° < < 90°, giving the value of & correct to 2 decimal places. (3]
b) Hence, solve the equation
8s5in26 - 6¢co0s20=75,
giving all solutions in the interval 0° < 6 < 180°. (4]
c) State the greatest value of 24sin26 — 18 cos 26 as O varies. [1]
7. 'The complex number is defined by w = 4 + 3i.
a) Find the modulus and argument of w. [2]
b) On a sketch of an Argand diagram, shade the region whose points
represent the complex numbers which satisfy the inequalities |z - wl <3
and arg(z—1) < f (5]
¢) Calculate the greatest possible value of |z| in the shaded region. (2]
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8. 'The position vectors of the points A, B, Cand D are given by

2 0 -3 2
OA=| 3 |0B=|moC=|n|oD=|-2]
-1 2 1 4
where m and n are constants.
Find
a) the size of angle AOD [4]
b) the value of n such that OC is perpendicular to OD [2]
c) the values of m for which the length of ABis 7. [3]
25
9. a) Express m in partial fractions. [4]
b) Given that y = 1 when x = 0, solve the differential equation
% - 2—15)'2(5—)})’
obtaining an expression for x in terms of y. (6]
10.
M _Inx

A
X

Inx
The diagram shows the curve ¥ = g = and its maximum point M.

The curve cuts the x-axis at A.
a) Write down the x-coordinate of A [1]
b) Find the exact coordinates of M. [5]

¢) Use integration by parts to find the exact area of the shaded region enclosed
by the curve, the x-axis and the line x = e. [5]
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Exam-style paper 3B — Pure 3

1. a) Sketch the graphs of y =|x + 2| and y =|3x - 2| on the same axes. (2]
b) Use your sketch to solve the inequality x + 2| > |3x i 2[. [2]
2. a) Express cos®3x in terms of cos 6x. [2]
b) Hence find the exact value of J‘ﬁ“‘rc:os2 3x dx. [4]
4]
L ix
3. Use the substitution 1 = 1 + e* to show thatJ‘ le — dx = 2.10 correct to 2 decimal places. (6]
ol4e
4. Solve the equation 25sin26 + cos 26 = 1 for 0° < 0 < 360°. [6]
5. The parametric equations of a curve are
=Iln(4 -2t s Y= w
A=In )y P
d
a) Express Exy_ in terms of t, simplifying your answer. (4]
b) Find the gradient of the curve at the point where the curve cuts the y-axis. [3]
6. Given that 2 + iis a root of the equation x* + px* + gx + 15 = 0, where p, g and r are real
constants,
a) write down the other complex root of this equation [1]
b) find the value of p and the value of g [4]
c) find the third root of the equation. [2]

'The diagram shows a circle with centre O and radius 12 cm. The angle AOB is 6 radians.

The chord AB divides the circle into two regions whose areas are in the ratio 1: 5.

It is required to find the length of AB.

a) Showthatf = g + sin 6. [3]

b) Showing all your working, use an iterative formula based on the equation
in part (a), with an initial value of 2, to find 6 correct to 2 decimal places.
Hence find the length of AB correct to 1 decimal place. (5]
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4—4x +6x°

8. a) Expressin partial fractions m

4—4x+6x°
1-x)(2+1%)

up to and including the term in x°. (5]

b) Hence obtain the expansion of in ascending powers of x,

9. A certain substance is formed during a chemical reaction. The mass of
substance formed f seconds after the start of the reaction is x grams.
At any time, the rate of formation of the substance is proportional to (30 - x).

W‘hentzO,x:Oand%:&

a) Show that x and f satisfy the differential equation % =0.1(30—x). [2]
b) Find, in any form, the solution of this differential equation. [5]
c) Find x when t = 10, giving your answer correct to 1 decimal place. (2]
d) State what happens to the value of x as t becomes very large. [1]
The diagram shows a prism OABCDE with a horizontal rectangular base OABC,
where OA =10 cm and OC = 6 cm. ODC is an isosceles triangle with OD = CD =5 cm.
g

Unit vectors i and j are parallel to OC and OA. Unit vector k is vertical.
The point P is the mid-point of AB and the point Q is the mid-point of DE.

e
a) Express each of the vectors OP and PD in terms of i, j, and k. [3]
b) Find the angle OPD. [3]
c) Show that the length of the perpendicular from Q to PD is A0 o, [5]

cm
V29
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Answers

The answers given here are concise. However, when b) i) YA
answering exam-style questions, you should show as many

[42]

steps in your working as possible.
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1 Algebra

S+

Skills check page 2 4
1. a) 32 b) 73 c) 47 d) 58 [0 ",;
2. a) 20 b) 6 o 22 d 20 3
. ii)
Exercise 1.1 page 6 24
1. a) x=-1 or x=2 b) x=1
2 2 1 9 R
) x=S or x=73 d x=5 or x=- 3
g 2 = # Wy =i+ 2
1 4 <
el x=3 or %= f) x=7 or x=4 :
— =3 = = >
g x=-5 or «x 2 h) x=1 or x=-7 1o >
; 3 O - =1 i
i) x=3 or x=-3 j) x=1 or x=3 o i) A
_s i} _s ¥ )
k) x=3 or x=7 1) x= o x=3 \4
2. a) l<x<3 b) x<-3 or x=5
< y=12x- 2|
c) —%stl d x<-3 or x>3 1
3. a) x£0 or xz6 b) —%<x<3 b 40 2 3 4’;(
c) e d x<-2 or x=>3
3 - = ii)
r}‘J\
e) —%<x<5 f) 0<x=<1
4 1 N
g x<-3 or x>0 h) -Z<x<2 3
Exercise 1.2 page 7 . y=2lx-2|
Loa) i) A ol 1 4 1 4 & &x
2 d) i) 4
Aly=xet 4
0 e o)
sy, oy of X Y13 7
ii) A ,
3 >
. 42108 6 4 20 X
y=ixd 1
4B p 40 4%

pr: QM Answers




YA d) x*-x-1
) L] i ' &) 2247
® £) 3-20-2
* g) 2x’+3x+1, remainder3
= =3 2. a) -5 b) 4 g -8
= d -8x-1 e) 2 f) -27
: 3. Proof
FL & Q o 2 § > 4. a) Proof b) (x—1)(x—2)(x—-3)
= 5. DProof
e i) 7 6. x*-x+1
T Nl 7. Quotient=x+x+1, remainder=-2x+6
{ 4 8. Quotient=2x*—-x-2, remainder=9
I 173 9. a) Proof b) (2x - 1)(2x+3)(3x+1)
l| 2 y=kx 10. k=10
| 1 11. Quotient =2x*-2x+ 1, remainder=-2
58240 L) 1x 12 =0
i ¥ Exercise 1.4 page 11
m T T 1. a) 127 b) 4 Qg -2
& _14 B b o 2 ,; et d -1 e) 4 f) 48
[ / “'j' \,V=IXI I 2. a=12 3. a=5
| - | ' 4. g=3andb=-6
I T \ I 5. a) Proof b) a=-20
[ =4 \ 6. Proof
= s ——r ——— 7. a=-7and b=20
0 . 8 a=2 9. a=¢
2 Exercise 1.5 page 14
1 BT 1. a) (x-3)(x+1D2x-1)
i . > b) (x-1)(x-2)(x-3)
L3 ‘ 6 7 ¢ (Gx-D)(x+ D)(x+2)
i) i Q) (c+d)r-2)@x-1)
HEEENEEEEN e (x+2)(x+ )(x-2)
gINy=p-" | | f) Gx+2)(x+2)2x-1)
B 2. a) x:% or x=-1 or x=-4
B l'l/j% 2 %110 4 N ;x b) x=% or x=-2 or x=4
> I : ¢) x=-1 or x=2 or x=5
d x=2 or x=-1 or x=-4
Exercise 1.3 page 9  x=4 or x=5 or x=-3
1. a) xX+x+1 f) x=-1 or x=2 or x:fé
b) *-3x+9

c) P-x+4

Answers 287



3. Proof 4. §<x<4
4. (x+ 1)(x-1){x—-2)(x+3)
5 a=7 5. x<1 or x>3
6. a) Proof b) (2x-5)x-3)2x+1) 6. 1l=x=9
7. a=3 or a=-3 7. xsf%, xzii
8. a=3 and b=8
9. —63(a=2b=-3) B X3
10. (x— D(x+ 1){x+2)2x+1) 9. 2X-3x*+4x-3
. 10. Quotient=x*-x+4, remainder=9
Summaryexerclse1page15 11. a) Proof b) (x—4)(x+3)(x-2)
1. x=6 or x=-1 12. k=1
x=-1 or ng 13. a=3, b=2
3. a) YA 14. a) a=4, b=-1
1] b)  (x+ 1)(x— 2)(x + 2)(x +3)
=0 15. a) 2-16
\: b) x=-4,x=4x=-3,x=2
. 16. a) a=12, b=20
] ydaid+s b) (3x+2)(x—2)2x-5)
: 17. a) A=-14
: b) i) x=1 or x=4 or x=9
i ii) x=+1 or x=%2 or x=43
) - 18. a) A=-18, B=32
3 P —1*0 3 b) i) x=-2 or x=1 or x=16
i ii) x=+1 or x=42
b) A ] ]
a 19. i) Quotientx*+6, remainder 8x+5
3 * ii) p=12,4=-30
2 [ iii) Proof, x = -1 /6
5+ 32 1% 1 2 L
j y|i=2-IXI

pr:. 3 Answers




2 Logarithms and exponential
functions
Skills check page 18

1. a) x b) X o x3

2. 2w

Exercise 2.1 page 21

1. a) 6144 b) 972 c) 80.1(3sf)
d) 2.09x10+
a) 252ml b) 7.12ml

$2.82 million
After 12 hours there is 100 x (0.8)"* = 6.9 mg, so need
further injections to be 100 — 6.9 = 93 mg to bring total
to 100 mg.

5. 9 am the next morning is 17 hours later. At 9 am
the volume is 3000 x (0.98)"" = 2128 ml = 2.11, so
there is enough (>2 litres) for him to drive the car
to the garage.

Exercise 2.2 page 24

7
1. a) -4 h) 5 C) 5 d) 8
3 5
e) 3 f) = g I h) -2
) -1 i =3 -2
i) z j) 5 k) -: D =
2. a) 256=28 b) 3 e 3.2 c) 32=4
27
d 9/3=3" e x=at f) t=s"
g 1
3. a) -3=log, (343)
b) 9=log,, (1000000000)
o —4=log, (é] d) 25=log,(25V5)
e) -3=logv f) x=log,m
1 2 _1
4. a) 2 b) = <) 5 d) =
1 =z
e) 52 f) - g 0
3 B Ya
@..;\ 44
\
\ 34

6. a) log 24 b) log 70 c) 2

d) log 36 e) log 54 f) 0
g o0 h) 2
7. a) log. 75 b) log, 2160

o log, [@] d) log (1252)

e) log (1000x) f) log, (@)
X
8. a) logx+logy-2logz
b) 5logx+6logy+3logz
¢) 2logx+logy-2logz

9. a) x+2 b) z+2y-x
c) z-3x d) -3x-3y

Exercise 2.3 page 28

1. a) 1365 b) -1.635 ¢) 0434
d) 1872 e) -5.036
a) 1.152 b) 0.878 c) 0461

a) i) 15.1kgof TNT
ii) 15300 000kg of TNT
b) 2890000 kg of TNT

4. 17.3 grams

Exercise 2.4 page 31
1. a) 286 b) 0613 «¢) 251 d -1
e 0638 f) 0712 g 120 h) 237

i 2 -2 K 6 n -3
2. a) 7.64 b) 4.96 o 121
d) -1 e) 545 f) 131

3. a) x=336 b) x<-0125 ¢) x>176
d) x>-0756 ) x<0414 f) x<496

4. a) 0827 b) 1.28 c) 2.10
5. a) 211 b) 1.27
6. 14terms 7. 20 terms
8. 10 terms 9. 12 terms
10. 15 terms 11. 18 terms
12. 9terms
1 2 1
13. a) = b) 5 c) 5
4 1
d) 99 e) 1+e
2 23 6 1 4
14. b) £ 2 o d 3,2
a) 5 ) 3 2 C) 5 ) 25

Answers




15. a) 0.248 mg

b) 2025

16. 27 years

17. 3 hours and 10 minutes

Exercise 2.5 page 35

1.

a) logp=log3+tlogb;logpandt
b) logy=log K - 2 log x;log y and log x
c¢) logy=loga +%log x;log y and log x

a) y=10x*
b) V=4Z,
3

C) y e lo(mﬂ.h]

y=Ax"=logy=log A + nlog x

n (the gradient) is approximately 0.6, and the intercept
(log A) is approximately 0.75, so A is approximately
10°7 = 5.6.

4.0

3.5 4logy=0.6logx+0.75| /
3.0
logy 20
1.0

|~

-1
0.5 4

O.D T T T T T 1
0.0 140 2.0 30 4.0 5.0 6.0
log x

-In k (the gradient) is approximately -0.675, so k is
approximately €™ = 2.0 and the intercept (In A) is
approximately 3.36, so A is approximately e*** = 28.8.

4.0

30

= | In p=-0.675q + 3.36

3.0

25

Inp 2.0

1.5 \
1.0 \
0.5 \

0.0 T T T T 1
0.0 1.0 2.0 3.0 4.0 5.0

Answers

n (the gradient) is approximately —0.5, and the intercept
(log A) is approximately 3.5, so A is approximately
10%° = 3200.

Note that if you use natural logarithms, the
graph will look different but the estimates will
be the same — to within the accuracy possible in
estimating from a graph.

4.0
3.5

3.0
2.5 4 \
logy 2.0

1.0
0.5

0.0 T T T T 1
0.0 1.0 2.0 3.0 4.0 5.0

log x

n (the gradient) is approximately 0.5, and the intercept
(log k) is approximately 2.8, so k is approximately
10** = 630.

5.0

40 //
35

3.0 ,/
log R 4
2.0
154
1.0
0.5

D.O T T T 1
0.0 1.0 2.0 3.0 4.0

log v

n (the gradient) is approximately 1.5, and the intercept
(log k) is approximately —0.7, so k is approximately
10°7 =0.2.

5.0

logT=1.5logD - 0.7
4.0 4 = g //
3.0
log T
2.0 1 2"
1.0 /

L} T 1 T L}
10 %7 10 20 30 40
log D




8. Inr (the gradient) is approximately 0.25, and
the intercept (In k) is approximately 6.3, so k is
approximately e®? = 545,

12.0 ]
i [Inp=025t+6.3
T ——
InP 6.0
4.0
2.0
0.0 T T T T T T 1
0.0 20 4.0 6.0 8.0 10.0 12.0 140
t
. ologa . _ _,log4
9. gradlent = 31087’ intercept = 21087
Summary exercise 2 page 37
_ 3 1
1. a) -5 b) > <) 7
2w 256=# b L=2° o 3242 =23
3. a) -3=log,——
216
b) 7=log, 10000000
3 Z
4. a) 4 b) = c) 3
5. a) log 14 b) log 204 ¢) Inl135
d 2 e) 2 f) log (25x%)
2
g In(2¢*+3x) h) 1{%]
X
6. 3logx+10logy+5logz
7. 2=3x-Yy
8. a) 227 b) -0.748 c) 0.139
9. a) 6 b) 1.03 c) 1.09
10. a) x>234 b) x<-0222 <) x>338
11. 10 terms 12. 20 terms
1 1 =_3
13. a) 3 b) 33 c 2 d x= 2+
14. a) 23.6mg b) 2108

15. 4 hours 59 minutes

16. nV=InA+TInr
In r (the gradient) is approximately 0.06, so r is
approximately e”® = 1.06 (interest rate of 6% pa)
and the intercept (In A) is approximately 8.1, so A is
approximately e*! = 3300.

17.

18.

19.

20.
21.
22,

| In¥=0.06T+ 8.1
8.6

8.5
8.4 1

8.3
/

InV 8.2

” 8.1 /

8.0
7.9
?.8 T T T 1 1 1
0.0 2.0 4.0 6.0 8.0 10.0 12.0
T
log P=logk+tlogr
log r (the gradient) is approximately 0.11, so ris
approximately 10°!" = 1.29, and the intercept
(log k) is approximately 0.95, so k is approximately
10° = 8.9.
1.8
164 |logP=0.1110gt+ 0.95‘[/9
14 —
1.2
wEp -/
B 0.8
0.6
0.4+
0.2
0.0 T T T T T T 1
00 10 20 30 40 50 60 7.0
log t
; _ s loge . _ - [loge
gradient = 2@, intercept = -5 [ Tog 5}
Iny=lnA+xInk
In k (the gradient) is approximately 0.4, so r is
approximately e”* = 1.49 and the intercept
(In A) is approximately 0.37, so A is approximately
e’ =145,
30
Iny 2.0 /
15 2=
1.0 —
0.5 4
0.0 T T T T T 1
0.0 1 2 3 4 5 6
X
x=3.54
x=-12.362 10 3 d.p.
-9.56

Answers




3 Trigonometry ) 48.0°228.0°
d) 11.3°191.3°

Skills check page 40 g SHLIE T
L a) 0 b L 9 L (:,ﬁj £)  114.1° 245.9°
2 J; 3
aQ N5 o NS § -1 8. a) 81.8°2782° b) 81.8°98.2°, 261.8°, 278.2°
2 2
9. 33.7%,213.7°
2. a) i) & i) -%
6 4 10. 3.87 rad, 5.55 rad
b) i) 318 i) -11.5°
11. a) 0° 180°, 360°
3. a) 26.6°206.6° b) %Z?E%S?ﬁ b) 7.2°,82.8°, 187.2°,262.8°
o) 12.3°72.3° 132.3°, 192.3°, 252.3°, 312.3°
Exercise 3.1 page 45 12. a) 180° b) 143.1°
2 (28 1 (5 <) 23.9%96.1° 143.9%, 216.1°, 263.9°, 336.1°
L 2 (23] b 2 _[_ _]
) E(=28) v 9 F[(-%
13. a) ¥ = cosec 3x
d 2 o) wil [:_a] _ o
\6 3 1 1 i 1
] 1 1 1
H V2 9 —L(--L) : W
3 1 ] 1 ]
) ¥ 15 i : : :
l'l) —% [—7¥] 1 1 1 1
T T T T T T T T 1
10 60° 240° 300° 360°%
i 1 1 1 1
2 a) 2 b 2 ) B : | ' :
1 1 1 ]
a 1 e) _%(:_ﬁ] £) -1 | ; : :
3 3 1 1 ] 1
2 (_ 243 _
g) _ﬁ [—_T] h) 1 b) y =sec 2x
s |1 : : !
3. a),b),c),f)and h) are defined. 2 | 1 1 1
9 1 ] 1 1
d), ) and g) are not defined. . 1 1 1 1
- 1 1] 1 1
1 ] 1 1
4. a) 160 b) 1.06 N S T T
o o o a o o o o X
9 -1.22 d) 108 _10_ 45° 90° 135° 180° 225° 270° 315° 360
e) 170 f) -0727 L ' : :
1 1 1 1
g) -3.24 h) -3.24 el : ! :
1 1 ] 1
5. a) 45° 225° b) 45° 315°
<) 60° 120 d) 30° 150 3 . Y |
e) 150° 330° f) 180° ! 5 ) !
1 1
6. a) Z b) 0,21 9 L= : £~ :
1 1
4: 5 L) L L 1 T L ‘;
d) %% e) %3} B T -360°-270°-180 90° 9 90° 180 70° 360°*
I 1 |
1 1
7. a) 70.5° 289.5° : 1 !
1 1

b) 14.5° 165.5°

b v Answers
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Proof

Proof T

6.

Proof

5.

Proof

9.

Proof

8.

18.4°, 135°, 198.4°, 315°
13. Proof

3T Vw

11. 64.3° 140.1° 219.9°, 295.7°
e

10.
12.

1
14. 45°, 56.3°, 225°, 236.3°

16. Proof

15. 51.8° 308.2°

y=Gcosecx

14. a)

»
o
Z
=T



Exercise 3.3 page 53 % 8) oL b 2 g 336
25 7 527
1L a) (\[_*1)01" \ﬁ*l) b) é(\/§+1) 240 240 289
4 4, a) = b) == c) ==
289 16l 161
1443 44462
<) Ltv3 o 2 \f3 d === 3 1 3 4
— _ 5. —— b)) —— S d =
1 \{3 4 Jg-l-‘\!E a) JE ) \/B C) 1 ) 5
2. a) Proof b) Proof
6. a) 1-sin2x b) cos’2x
3. a) cosrx—3,cos,6—]2
5 13 7. 12cos’0—8 cos’@— 4 cosb
b) sm(o:+f3)— ,sm(rx ﬁ)— ,cos(nc+,8)—6

5° 8 a) i) 3sinf—4sin’0

cos(a—B) = i) 0°,45°, 135°, 180°, 225°, 315°, 360

b) 3tan@—tan’@
c) tan(oc+,8)7 tan(rx ,8)756 1-3tan*#
cot’f—1
4. V23 +1) (or (3 + 1 Zeotl
a) N ) (or zJE( ) 2cotf
\E : 10. Proof 11. Proof 12. Proof
b) 2(1-3) (or =(1-43))
o ﬁ_l 2 Exercise 3.5 page 60
il 1. a) 13sin(6+33.69°) b) 149 sin(6 + 34.99°)
O Lo da-B) O VBsin(0+2657°)  d) 4lsin(9+12.68)
242
& &5 2. a) i) +/89sin(0-57.99°) ii) 25sin(f—73.74°)
5. a) X2 b ¥ 9 a) 3
2 2 iii) V5sin(0-2657°)  iv) /19 sin(f - 66.59°)
6. a) 2sinocosf b) 2coswcosf ¢) -sinf
b) i) /89,89 ii) 25,25
7. Proof 8. Proof i) \/_,, JE iv) \/1_9,7 J1_9
cotfcotp — 1
9. cot(f+ @)= —m o 10. Proof 3. a) 2cos(6+45%) b) 6 cos(8+35.269)
1, il % b) _% o _% ¢) Scos(f+ 36.87°) d) /6 cos(8+24.09%)
4. a) i) 5cos(f-53.13°) ii) 13cos(0- 67.38°)
12. 29.3° 105.7°,209.3°, 285.7°
iii) /3 cos(0-35.26°) iv) /2 cos(f— 45°)
13. O, m 21
b) i) 5-5 i) 13,-13
14. 45° 225°
i) V3, -3 iv) V2,-V2
Exercise 3.4 page 57 9 1) 5313 ) 67.38°
1. a) 30°90° 150° 270° i) 35.26° iv) 45
b) 607 90° 120°, 270°
O 60°300° 5. a) 5sin(0+6343°) b) 90°323.1°
d) 48.6° 131.4°,210° 330° 6. a) 2sin(f-30°) b) 60°180° «¢) 4,0
e) 0% 60° 120° 180°, 240°, 300°, 360° 7. a) 8 cos(f+45°) b) 243° 2457°
f) 0° 45° 135° 180°, 225°, 315°, 360°
8. a) +/52cos(8-56.31°) b) 102°,1024° ¢) 57,5
2. a) 0,042,272, 7 3.56,5.86, 21
b) 0,137 %491 2% 9 %5??1' 9. a) 257.6° 3498 b) 1637
¢ 53.1°%323.1° d) 29.6°256.7°

Answers



10. a) +/5sin(2x +26.57°)
b) 0,63.4° 180°, 243.4°, 360°

o 10+5,10-+5

11. a) 17sin(x + 1.326)
b) 1.00,5.77
o 16,1

12. 79.7°,153.4°

Summary exercise 3 page 62
1. 52.5°2325°

2. 0.841,2.09,4.19,544

3. 23.6° 1564° 4. Proof 5.

6. a) Proof b) L (=J§ -1)
1442

7. Proof 8 1 9.

Proof

Proof

10.

11.
12.
13.
14.
15.
16.

17.

18.
19.
20.

a) 13sin(6+ 67.38°)

b) i) 13 ii) 22.6°

a) /41 cos(6 + 51.34°) b) 56.9°2005° c) 20
a) 25sin(6+ 73.74°) b) 694°<f<323.1°
Proof

0, 56.3°, 1807, 236.3°, 360°

120°, 240°, 300°

Proof
.0t g__1
a) smz—m,cosz—m
b) Proof c) 68.7° 164.4°
a) Proof b) x=16.8°61.8°106.8° 151.8°
a) Proof b) 0° 30° 150°, 180°

60°, 150°, 240°, 330°

Answers




4 Differentiation 5 1 s 2
Skills check page 68 5. (2,In6)
1. a) 12¢- L b) 8+ 9 6. Minimum turning point at (1, 1)
: = N
g ol &) 58 Exercise 4.3 page 75
o . 1. a) e(x+l) b) 2(6x - x— 10)
2 a) " b) = 5 x(Gx’ +2) 2+Inx
S (2x+3)? o N 4 2%
3-2x —30
R =) d (x—3)(5x—3)

) T ) Jeet1r € 225 (9x+5) ) T m—
Exercise 4.1 page 71 g yeeer(@magy W) (eeA)Pes)
1 a) 2e= b) —5e Q) 3en i) x+2xlnx J) x(x+3)}5x +6)

d) e e) —T7e* f) 10xe” k) ex-1Y2x+7) D (xil]2

g) GEhil ]l) —8x ™' l) 10xe™ lTl) 39‘5(2\/5_4» x+4) l'l) 432 e (2x + 3)

N 3er 3% -2 4

£ Kk N — _

)] = ) T ) & o) 2¢ (i +1In 2x) p) = :_12)2
p ~2e b) e 27e>

o ) i€ o e g =L r) 2x[1+In(@+1)]

e (1-5x)*

d - ‘7; e) 3e*—8e* f) —de™ 5. 1

e

g de-—e* h) —-6e*-12e%i) 2e*+e* 3. y=725x-1200

j) 24e™—12e* k) —e 1) —de ™ - 14e"> 4, Proof

10 4 e-3 5. Minimum turning point at (-2, —e™%)

(0,1) Exercise 4.4 page 78

Maximum turning point at (0, —1) e @) 6 b) e (2x—1)

' (x+3)2 x2
Exercise 4.2 page 73 g Xx+8) Q L
(x+4) (1+x7)
i o) I b) 2 o = .
: X x -1 3+5x d 6 f) _ 3x(4e” —2xe" —x)
. @-xr Y e —xF
a o == n L
X' +2 e =7 2x g) 11 h) —3x—7
24 4x+1 : 2 (2x+1)° (x+1’
= h) = H ==
6x—3 223+ x x D 6x(4—x) ) 42x+1)
) 2 W -2 D 5o ey i
) X x Ox—2 ?_4v_1 T
8 3 2 T nx
& ) x B x ) 2x-1 2 2 5 3 2
m) X (3—4x3) n) dx +43{3 —6.27c +3
) % ©) 2x1+l 5 % (1-2+)? R
3¢" -2 18(2x+3) . 10 2+« 2(x" —7x—=6)

8 3; —2x X X +3x ) x(7x—2) 0) 21+vx) P (2x—=7)

) 4(x—4) Y s p O ) (Bx =21/ (x+1) 3 —2x(2x" +3)

) x(x—8) x+3 E! 257 L

(1+2x%)?

Answers




x=0and x=3

3x+4y=22
2

(x-1)°

Proof

A U

Proof

Exercise 4.5 page 80

1. a) 5cos5x b) 3sec® %
¢) —2(x+1)sin(x®*+2x) d) 8tanxsec’x
e) 3x’cos(x’—7) f) 20 sec’ 4x

g) —3cos’xsinx
h) 2cos2xcosx —sin2xsinx

i) x(3xsec® 3x+ 2tan3x)
. —2xsin2x—2cos2x
k) sin? 3x (9 cos x cos 3x — sin x sin 3x)

2sec’ -J;
D s

Proof

W gl b N
<
[
[
=
-+
[
i

6. (%, %) max, (%, 1) min,(Sér, %] max

Proof; Minimum value is % - \/?_J X

8. Proof

Exercise 4.6 page 84

cosy—1
1. a) & b) ——
¥=1 2y+xsiny
15 5-3x"—y°
c) s d —
) 1+9x° ) 2xy
2x 2y+7
©) 1-2y f) 3+2y-2x
(1 — . 1
g yi-log} h) | ——+tan'x
X (1+x7)
i +1 3 2% +x”
i) ; o=
-y 2y —yx
yYcosx—siny
k) Sk dlb 4 ) e
XCosy—sinx e
m) * - +tan"'x n) ﬂ
1+x° 1+3y°

e

xel 42

o)

1

9 2+48x°

1 1
2. —3ancl3

xt+ty=2
4. Proof
Proof

1

6. ——
1-2x+2x

Exercise 4.7 page 86

1. a)%‘t

2
) —5cott

e) sint
1—cost

1

g)

4t

3
2t+3

i)
k) —gcot 7}

Proof

Proof

1
x—-y—-8=0
Proof

4
0 or 3
10. ) —2cos3t

5sin 3t

e

P

r)

b)
d)
f)

h)

j)

b)

ylny
y—x

2xy’ +sinx

2—cos y—3x"y*

1
2

3
1
t
241 — 1)
—tan @

—cosec 8

3t°—4
2t
Proof

Proof

(0,2)

Summary exercise 4 page 87

1. a) —5e
4
c —
) 1+16x°
cosx —sinx
g — =
€
x(x" —2)
8 5
(x*=1)2
i) 3)[3—y2
2xy-1

b)
d)
f)

h)

j)

8x
4% +5

(2x—3)*

(x+1)(x—-2)*(5x—1)

9
3x—4

14

Answers




298

e (xlnx+Inx—-1)

k
) (Inx)?
1

m) 0
25+ 3"

0) 1—?
y —2xy

q) 2" *tan x sec? x

s) 3cotf

) 12t — 1
2At+2)°

s 143x°
2x(1- )

2

)

Y 1+100x"
-3

i

(1.3)

Answers

1)

n)

p)

r)
t)

v)

x)

xe¥ *(3x+2)

3
3x+1

1+Ilnx

x4 yz
3y’ —2xy

Proof

9.

11.
13.

15.

17.
19.
21.

22.

t—1
) o

y=-26x+ 60

S5x-¥y+9=0
—l6x

(1+4x)’

3z

4
Proot

25
8

Proof

Proof

5—2x
a) 2y b)

(49, -9)

b)

10.

12.
14.

16.

18.
20.



5 Integration

Skills check page 91

1. a) 2e™'-e* b)
) Gen

2. Proof

Exercise 5.1 page 94

1

1 3 1 axn
1. a) 3¢+ b) S e )
d LemP+c o Loty f)
T 4
g -e*+c h) —%e"'” +c i)
2. 1gm A b) le-1
a) - ) S <)
d) e'-1 e) 4def-4 f)
g 1-1 B il i)
[ e
3. a) 1 b) 8 o 1
15 fl 4 et
) ) 1 9 2
. 242
1) 81ln 3
4. -1 5. %(1—#)
6. 5.52 7o T=sekl
8. a) % b) 3ot <)
d 1 e) 2¢ f)
9. %(1 —e ") =157
Exercise 5.2 page 98
1. a) lln|2x - l| +egxzl
2 2
b) lr1|2x71|+6;x;tl
2
c) ln|7x+3|+c;x;t—%
d) —51n|5—2x‘+c;x¢%
e) 21n|1 —3x|+c;x i%
f) —lln|6x +5|+c;x #om
3 6
8 —31n|x+1‘+c;x¢—1
h) —ln|7—x|+c;x;t7

4 cos 4x + 6 sin 2x

2% 4+ ¢

zeD.SA'+D.5 +c

_Deb -0 4 o

d) 80

7
h) 4In2
1
2e

i) 2ln|x+ e| +ox#—e
i) —iln|2x + l‘ gyt —%

16

k) 7§ln|9x + 16| +ox# “5

1 —éln‘le - 3| taxES

10
2. a) %ln(g) b) Inf2)
d) 21n(§) e 2in2
2) 2111(%) h) zm(g)
3. In2

4. 2Jn(2) o
5

5. %ln21:1.52

Exercise 5.3 page 101

1. a) %sin2x+c b)
<) i tan(3x + E) +c¢ d)
3 12
e) -—4sin (£7£]+c f)
2 4
1 T
g) y- tan(ﬁ - 5x) +c¢ h)
i) -3 sin[4 - %x] +c
1 1
2. a) 5 b) &
d 0 e) —-15
g) 0770 h) -0.510
3. y=tanx+1 4, 2
5 1 6. —L-=o.
23
Exercise 5.4 page 106
1. a) Lsinax+1lx+¢ b)
8 2
c) %taan +c d)

e) Ly Lginay+¢ f)
8 32

c) ln(%)
f) TIn(%)

i) ln16=277

L cos(2x + 5) +c
2 4

—sin{mr-x)+¢

1 T

—cos|2x — =) +¢

2 4

Cos(lx) g
2

¢) 0488
V2
f) 3
) 1.04
289

Ly Lgingx +c
2 12

L cos2x + ¢
4

x—%coslx +c

Answers




2. a) % b) % 0 L a 3= 4. a) 0590

3 2 b) The approximation in a) is an underestimate as
e) 3r+8=174 f) Z-1=0571 the chords are always below the curve and give a
% (slightly) smaller area in each strip than the curve
1. 2 itself would.
3 =—x+-—sin2x 4. =
Y m NES
. A
5 =
2 0.4 ! ! |
_— /-‘___'“‘"--.
6. a) Proof b) e el | T | [ e
- 7 [T~
T
7. a) Proof b) 5 +5 0.9 / | |
2 i
8. a) Proof b) & 8_4 0.1 4
NE) T T T T T
9. a) Proof b) 1”—2 = 0 05 1 15 g X
10, 45 Pioet b) &3 5. a) i) L17(3sf) i) 1.10(3sf)
12 16
9 A3 b) 1.10 (3sf)
2
) Summary exercise 5 page 113
Exercise 5.5 page 112
1. a) 0335 b) 142 ) 0695 L oa) e+ b) —linlex+2+c
d 146 e) LI3 £) 0429 _
c) —Leosax + ¢ d) X _HniEE e
2. a) 0.333 b) 1.53 c) 0.663 4 2 24
d 150 e L1l f) 0.416 (2]
e) —2¢ T'4¢ f) 4InBx—4/+¢
3. a) 297
b) ‘The approximation in a) is an overestimate as g) 2x +cos2x + 2sin2x + ¢
the gradient of the curve is increasing over the
interval so the chords are always above the curve h) —2Inl3x+5 +¢ i -1 si.n(3x i £) T
and give a (slightly) greater area in each strip than 3 3

the curve itself would.

2 lee_l  b) In3 R
% a) = ) In c) e
. . ; -
9 / d) Uz, 5 e) ZCOS(E)—\/E f) Z
=1 ] 8 2
1.5 /’/ ) -3 h) —l(e*—e'z) i) ZIn—
/ﬂ/ g 4 2
1 1
R 3. Je-—ze
0.5
4, Inlb5
L 0.5 1 1.5 2 4

()| I Answers




10.

11.

12.

13.

e i A = F
JEsa 451r12x+4 e
ln[ﬁ}:l.89

2
YA

T >
e i 1 |
-1 \t’\g?:\gr X
| —1- I I I
\ __2_.
5.29
af i b) = g 2
) 5 ) L ) N
4r(e™—e®)=0.226
a) Proof b) % =0.371
a) Proof b) 243
a) Proof b 2

2

a) 3.61

14.

15.

b) Underestimates the true value as the curve always

lies above the trapezium.

YA
2_
1.5 4 I 1
|
1-\ | //
0.5
\/ ‘
L] LI
. x =z 3 m 6r 3z*
4 2 4 4 2

a) An integral gives the signed area, so integrating
between 0 and 2 would subtract the area below
the axis — between 0 and 1 — from the area
above — between 1 and 2.

b) 0.824

Note: The value of the function at 0 is taken as
zZero in using the trapezium rule to estimate R. To
do the integral analytically would require it to be
treated as an improper integral.

9.5

16. a) %sin69+ f+c b)) In(11)

Answers
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6 Numerical solutions of
equations

Skills check page 117
1. a) 1.80 b) 2.24 c 1
2. a) 231 b) 2.62 ¢) Not defined

3 x= %(ln(y+3)—1)

Exercise 6.1 page 122

1. Rootis 1.2to1d.p. 2. Rootis3.9to 1d.p.
3. Rootis1.0told.p. 4. Rootis09to 1d.p.
5. a) Rootis0.3to1d.p.

b) Rootsare-1.9and 1.5to 1 d.p.

6. Rootis 0.77 to 2 d.p. 7.
Root is 3.96 to 2 d.p.

Root is 0.87 to 2 d.p.

Exercise 6.2 page 127
1. a) xX*+3x-1=0 b) x'+5x'+9x*'-2=0
c) e¥-x=0 d) 2x-é&*=0

e) cosx+f—x:0 f) x*-x"-3=0

2. The lists below should not be taken as exhaustive
of all possibilities:

;
a) x=343x-2,x=%2*2 4 :3)[—?2,

3 x
2= 3”:2,x213—3
X X
T 7
b) x=74x3*1,x=xtl,x:-‘x-l-l,x:-\ ]4
4x 4 4—x

2 +1 [= .5 X -1 1
o x="—Sux=Y+Lx="—=x"-,

X X
x=vx -1, x= ‘1 s X = ‘1
x(x"=1) (x"=1)
d) x== ;e ,xzsx;e sx=+f3x+e™,

e) x=-e,x=+In3x, x="

Answers

f)

a)

b)

<)

d)

e)

f)

a)
<)
a)
9

a)
b)

9]

a)
b)

x:tan"( 21 ], wmSOtatd x=+fcotx+3

x—3 X

x, =0.5,x,=0.28571, x, =0.30434,
x,=0.30263, x, = 0.30278
x,=0.5,x,=0.41649, x, = 0.421 34
x,=0.42100, x, = 0.42103
x,=0.5,x,=0.36787, x, = 0.479 14,
x, = 0.38355, x, = 0.46435

x,= 1.75,x, = 1.74723, x, = 1.74881,
x,= 174791, x_ = 1.74843
x,=11,x,=1.23899,x = 111114,
x,= 122903, x, = 1.12054

X, =1.2,x,=1.19595, x, = 1.19474,
x,= 119439, x = 1.19428

Proof b) Proof

Root is 1.47 to 2 d.p.

Proof b) Proof

x,= 242037, x, = 2.38492, x, = 2.369 11,
x,=2.36205

Proof

6 =170670.., 08 =1.74946 ...,

2 3

6,=1.70724 .., 6, = 1.74893 ...

The odd-numbered values are decreasing and the
even-numbered values are increasing — moving
towards one another, so eventually will converge to
the root.

Proof

1.37 to 2d.p.

Proof

X A =COSX,x = 75; x,= 0.73168 ...,
x,=0.74404 ..,x,=0.73573 ., x, = 074133 ...
So this iterative relationship converges to 0.74
(2d.p.).

s cos™! X, X = 0.75, x,= DF227 % s

X, =0.76304 ..., x, = 0.70278 ..., x, = 0.79149 ...

So this iterative relationship does not converge.

Proof

) x,.,= |—2— x =17x =1.6265..,
x -1 ! 2



x,=1.74315.., x,= 1.566 10 ..., x_= 1.85523 ..

So this iterative relationship does not converge.

X +5

- .
I.l) Xpa1 = 3
x?ﬂ

RS LT S G0E Y

x,= 182988 .., x, = 1.36249 ..., x, = 2.71075 ...

So this iterative relationship does not
converge.

i) x,, =4x, +5,x, =17,x,=1.67598 ..., x,
=1.67165...,

x,= 1.67088 ..., x, = 1.67074 ...
So the root is 1.67 (2 d.p.).

Summary exercise 6 page 131

1.

S O

03 (1d.p.) 2. -07,2.6(1d.p.)
i) 13(1dp) i) -4.1,-13(1d.p)
13(1dp)
i) 20+4c=1 i) 5@=xv-1
These are not exhaustive lists of rearrangements.
P v W) x-Et2
4x" -3 =
=2 e \/IT?
e 4x;—3 e 31;—2
x=3x-2

10.
11.
12.

13.

14.

i)

i)
i)
i)
i)
i)
i)
iii)

i)

x, =05
x,=0.22222 ..
x,=0.20930 ...
X,=0.20873 ...

x, = 0.20871 ..
Proof  ii) Proof

Proof ii) 1.13

i) x =05
x,= 032778 ...
x,=0.32889 ...
x, = 0.32886 ...
x,=0.32886 ...
i) 2.84

Proof ii) 1.36 radians

Proof  ii) Proof iii) Proof iv) 0.36
3.10 i) a=330
2x(1+e2x)—2x262"'. .

ey ; Proof ii) Proof
m=1.109
Proof ii) Proof iii) Proof iv) 2.28

Answers




7 Further algebra R - 6 3-1i 15
Skills check page 136 s L, 2 . _ 4 8. X3
0 x-1" (x—1) 2x°+2) 2x
L. A= B=-4 C=-9
- . _ -1 2 5 1
2. A=2 B—24 €=0 % T ¥era 10 1¥ 053 B
3. A=-7 =3 C=-2
5 3 2 1 x+2
4. A=3 Bl c=0 a2t ey e Uit aa
5. A=3 B=0 C=-1 1 1 2 1 1
13. x_l—x_2+(x_2)2 Idy L=
i 1
Exercise 7.1A page 138 15. St a—
3 _ =2 5 1 .4
Kl Hmll AEEDS B Exercise 7.2 page 146
1 2 -1 4 2
3. T 3tr—g 4. e 1. a) 1+4x+10x8%+20x°+.. for-1<x<1
12 3 b) 1-15x+ 135x% — 945x° + ... for—%(x(%
x+2 x+3 x-3 1 1 .5 5
c) Lygx=g +ﬁx3+... for-1<x<1
Exercise 7.1B page 140 d 1-2r+2e-2es. for-2<x<2
1 2 3 9 9
L. x_2+(x_2)3 2. ;_3X—1+{3x—1)2 e) x+xX+xX+.. for-l<x<l1
5 L1 P £) 14 10x+ 75 4500+ ... for—%<x<é
fox-1 x-2 (x-2F - "
1 1 1 2. 1-=x+gxt+.. for-1<x<1
i R T T 2 8
3, a) 1+2x+3¢+4x for-l1<x<1 b) 50x*
5. 1__1 + L = 1. 15 5 1 1
X x-1 (x-1 4. a) ]—x—Er—Ex—gx*+... for—5<x<5
) b) 0.8944
EXBrClSB7.1Cpage141 5. 1—%x+§x2+... for-1<x<1
L s p T e 6. 1—8x + 48+ — 2565 for L 1
¥+2 1-—x X 24 x . x* + 48 256x° + ... or—5<x<5
3 5 Bih 4 1—x 1 7. 1+4x+7x+10°+...for-1<x<1
S 2 @ ‘+4 0 x+1
¥ 204 . 8. a) 1+%x—%f+%x3+... for-1<x<1
5 3 _4x—7 6 2 % x41
Iy L Tty g b) 1.0392
5 3-2, _2 g 35x 4 9. a) a=-ln=-4 b) 20
-y  Siae BRIl 10. 1-3x-x+3@+x+.. for-1<x<1
_ 11 a) k=-3,n=-8 b) 405
Exercise 7.1D page 143 13, 3. i e
9 14 1 1
L 1- + 2 l-0—+0——
x—2 x-3 2x+1)  2(x-1) ’
Exercise 7.3 page 148
3. 3+ 1 4 -1- 24— . L
. 2 = . 3 2 1 -4 x|” ax |
X+4 x-3 x+ (x +3) 1. a) La-2x)7 b) (1__) <) 3(1+_I)
5. A=-2,B=3C=-1 2 3 27
. 2. é+%x+%xz+%x’+... for-2<x<2
Exercise 7.1E page 144 i
i > 1 5 a8 15 3. 2-gx- gt for—4<x<4
Tox+3 x+1 . x+1 x+2
2 3 5 x —2
& x75+(x—5)2 4, T-5x 1+

Answers




1
4. 27
1
5. 2
6. a)
b)
7. 3+
g L.
P

9. a) p=-24,=108 b)

x P X

4+8 ]6+"' for \E<x<\/£

1 1 3 1

e X +.. for—4<x<4

16 32 256 256

6 21e

for—\6<x<\ﬁ

1728x*

10. k=2

Exercise 7.4 page 150

1. a)
b)
2. a)
3. a)
b)
4. a)
b)
5. a)
6. a)
b)

2 . 3
1-x) 1+ 3x)
5-7x+29+ .. for—%<x<%
1 1
- — b) -4
+2x) 1+ x)° )
_3 1
2x—-1)  2(x+1)

—2-x-2-x+.. for-1<x<l1

v NN (g
(l-x) " (1-x)  (2-x)
a4+ 2+ Bey for-1<x<l
2]{ 4r ... Ior X
1 1 b -Z

T1-x) (x-2) 8

1 4 x+1
21-x) 201+ x%)

l+x+xi+.for-l<x<l1

7.

2 14+ x
e Rrne

b) 3+45x+7x +..

Summary exercise 7 page 151

10.

11.

12.

13.

14.

15.

i 1 3xbl 3
x—3 x+2 2Ax*+1) 2Ax+1)
3 1 5 4 5
1+ + + =
x-2 x+1 Ax—1) " x—1" 9HAx+2)
: S S |
5(x —2) 2Ax+3) 2x-1
1 6 4 Bl W
x—4 x+4 (x+4) Yox'—2 x+3

A=5B=-3,C=2,D=-2

1 5 75 125

gL i e 3 2 g
+ Xt Xt Xt for--<x<

4 4 8 5 5

a) e S A
2 8 16

b) 0.499

1 9 BT 4 4

g g R s for 3 <X<3

Q) S-gx+rts
b) 0.49875467

BB
2

2
g et
1+x  2+x
b) g_%x+%f—%x3+... for-1<x<1
a) 2 1 )

A+x) A-o (-2

b) 4+3x+10x°+.. for-1<x<l1

Answers
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8 Further integration 2. a) %tan_l(Sx)+c b) itan'l(4x)+c

Skills check page 154 Q) —tan(7x)+c
1 3 7
1. a) ]+?+—2 1 1
X X— il -1
] g . ) 3. a) ﬁtan (ﬁx)-&-c b) Etan (2J§x)+c
) D D T L
c) —=tan (ng)‘i-c
C) 3x—1 + 4 “r!g
_x2 T ) X+ 3 Ax
1 | 3x -1 2%
4. a) -—tan™'| = |+c¢ p) ftan [ J*f
» 1 6 7} 3
© o 2x+1
9] Ltam'l (7—x]+c
. 63 9
Exercise 8.1 page 159
2x—1 X+5 5. a) z b) = c T
1. a) ln‘—3 +c b) In m‘ +c 6 12
x—2 V2x+3 6. a) il b) £ o Z
<) lnx+5‘+c d) ln—x_l_5 +c P 10 =
1 1 4
€  lnl2+3x = Jlnfl—daf+c Exercise 8.3 page 165
15 3 L i
f) ln|(x—2)\/ﬁ| s g Zln(ﬁ) 1. a) 2Inl+3l+¢ b) 2ln\l+sm2xl+c
h) Iné6 i) ln(ﬁ) <) %lﬂbi] —4x+3+c d) éln|4+2e“ +c
9
e) Linle+4+ f) Inlsinx| + ¢
2. a) In2* |- L e b) In|—=% L 2n|x +e
x-1 (x-1) x+1  (x+1D)
1, (1+€
x+1l 12 1 ® 1[4 h) gln[ = ]
<) lnx73‘ =3 +c¢ d) gfan 3 3
i) In2
6 2 2
e) m(?) +2 f) ln(;) 21 2.0
a) Proof b) In|x+sin’x| + ¢
3. (r-2F b) 2x+1 —("_3)4‘+
8 xtlp=rsive B Zwwlneree i o} Dok b) %
c) 1+21n[2J d 5+1In [47’(—73] =6.13 = T) Broof b) 138
e 3 6. Eln e +e M +c
4.  Proof 5. Proof 1
7. a) Proof b) Ean
4 25
L ln(E) % 05 ”n[?] 8. a) Proof b) 0.186
8. Proof .
Exercise 8.4 page 172
Exercise 8.2 page 163 1. a) 2xe™—e"+4¢ b) —%xcos 2x + %sin 2x +¢
1. a) étanﬂ[gjﬂt b) tan™' I l4e c) (2x-De*+¢
d) Lix 4+ 3)sin3x + Leos3x + ¢
o 3 9
¢) tan [—]+c

Answers




e) Lyewi_Lleway . ) Llyzppse Lly2y
3 9 2 4

x = 1 1 _
g) ~tan 'x——x 4 —tan 'x+c¢

2. a) l+¢ b) 37" ) 3e+1
d) 1.05 e) 238 f) 1
3. a) 6xe¥—dxe™+ %e” +c
b) ich sin 2x + 2xcos 2x — ésin2x +c
2 2 4
¢ 319 d 0718 e) 1.14
f) 0319 g) 0.0741 h) 139
1
0.227
a) 0.102 b) 0.0745
Exercise 8.5 page 178
L oa) (V2x+1) —3J2x+1+¢
b) %(1 + x.:ﬁ ¢ c)  sin® [%) +c
d) %(x+2)% T
1 i 2x 2x
e) Etan (?)‘FC f) Lnle +x|+c
7 z
2. a) 2 b) 55 <) .
d V-1 e) 3 f) 213
g 45 h) 1
1
3. 114 4.
5. 1.08 6. 0.366

Summary exercise 8 page 180

1. a) ln‘A(il‘;J‘ b) In|Av2x—1(x+4)
2
x+1)(_ 3 x+1 1
) l“‘A( 7 )‘ R o e e
e) 3x—In|A(x —)(x + 1)
- R T W
NESET
3. a) Injx*+6|+c b) —éln|3—25in3x|+c
<) %ln|3x2—4x+7|+c
1 -
d) —gln|6—5e"\+c e) In|x®+9|+¢
1 3 13
f) 3ln[x +10|+ ¢ g) 3ln2
h) lln[“‘"J ) In3
3 3
4. a) %xez" — ée” +c b) 2xsin2x+cos2x+¢
¢ (2x—5)e‘tc
L — ; Loy = -2
d) g(x x + 3)sin3x + 9(2}: 1) cos3x T sin3x + ¢
e) 0.264 f) 134
4 3 4
5. a) §(J3x—1) +§(\f3x—l)+c
1 +)3 iy 71(3 )
b) 6(4+x)+c c) 2sin {2 X +c
d Lax+7) -Z(2x+7)
E(x+ )——5(x+ ) +e
16 1 £
Q0 2 f) 106 g - h) 3-1
6. 15+ln4a 7. & B 2 g 1
36 8

Answers




9 Vectors ) 4i+4j+ 4k, —4i - 4j- 4k
. d) -2i-fj+2fk 2i+1 -2tk
Skills check page 182

7. a) Bi+j-3k b) -8i-j+3k
—» |3 - [ -3
1. a) AB=[ ], BA = ] 8 x=2,y=-2,z=2
4 -4
i o (=3 Exercise 9.2 page 189
b) AB=| |, BA=| | 1. a) 34=583 b) V45=3v5=6.71
o VB50=5v2=707 d) 490=310=9.49
-> -1 > (1
C) AB{_ZJ, BA = 2] e) 15
2. a b c
2 _3 11 2. a) —(21 3j+k) b) —| -1
Ji4 3 .
Exercise 9.1 page 186 .
. . 1]
5 " g 5 <) g(—1+2]—2k) d) wird i
L a) |, b) | 5 9 |o d | 4
5 3 3. (b)and (c)
) ; 4, a) 1 b) 28 o
2. a) 3i-j b) -3i+j T R
d i+3j+k d) —3i-3j-5k 5. a) a=3,b=-4,c=1 b) a=2,b=-1,¢c=0
> > 6. a) ABandCD b) CD
3. OFE =6i+6k,  OF =6i+6j+06k, 3
- —
EG = —6i+6j, CE =6i-6j+6k 7. a) (0,2,4) b)J_ 4 orJ—( i+4j+2k)
2
=
4 a) (7,82 b [e%%] g | -5 2
3 9] 2_2 or = (21 2j-k)
-1
> 1 > e |
5 @ 4B=| o), BA=| -2 Exercise 9.3 page 192
—6 6
4 12
> (3 g [ 1. a) |-1 b) | 2 o |2
b) AB=| 1}, BA =|-1
5 13 3
3
- L —> = 21
c) AB-= . BA=| 2 8 1
i i d |3 e) | -12 f) |2
8 =12 3
3 3 2
— 2 —_ 2 . .
d ap-| 1| Ba=| 1 2. 2(-i-2j+2k)
2 2 3. a) i) 4i i) i+3j+5k i) —i-3j-5k
2 =2
b) 3i-3j-5k
6. a) i+j+5k-i—j-5k € i) 4i+4j ii) 3i+j-5k i) i-j+5k
b) 8i-4j—7k,—8i+4j+7k d) V27=3S3

Answers




4. Proof 3 1 5
S . 4. a) r=[2|+1 0 b) r=|(2|+40
5. a) —i——j-—k=—(7i-j-k 3 6
2 21 2 2( ! ) 3 —4
b) Zi+lj-2k=1(15i+j-5k) 01 (25
S ) r=|2|+4 0
6 0 3
6. a) i) 0 ii) | O iii) | 4 5. PandQ
0 2 0
6 -2 6
b) | —4 6. a) r=| 1|+t -1 b) Proof
-2 0 4
-3 3 3 -3 2) (-1
C) l) 4 i.i) 0 ii.i) 4 I.V) —4 7 H.) r=|-1L(+1 2 b) o=-3, ﬁ: 7
-2 2 2 5y AR
3 2 -1
d4) 1 - 8. a) r=|3 |+t 1 b) x=-2,y=7
i gl el
% =] Exercise 9.5 page 200
Exercise 9.4 page 196 1. a) Parallel b) Parallel c) Not parallel
L &) i) (23-1) i) (6,-2,9) d) Notparallel e) Notparallel f) Not parallel

iii) (=10, 18, -31) g) Parallel h) Parallel

b) i) (-4,6 -3) i) (%% 0]
1) (14,-12,9)

[ * +t - 10 .
B= sy 5 ¢) Intersectat [ 1 d 5
: i 1 11 _2
b) r= ) + " ¢ r=t 0 o2
3
: 5 ; 3. a) |0 b) 2i-j+k
r= [—J r[sj e) r= f[?,] 0
o (1))
r=| |+t 4. f
e )

3. a) r=2-t)i+(1-t)j+(+t)k
b) r=(3—1)i+(2+4t)j+(4—4t)k
€) r=tj 6. c=-2;(1,5-3)
d) r=(3-20)i+(7+3)j+2tk

e) r=ti+tj+tk
f) r=-3i+2j+(6+1)k

2. a) Intersectat(3,2,-2) b) No intersection

t
d) +

5. Proof

7. Proof

Answers




Exercise 9.6 page 204

1. a) 222° b) 50.0° <) 90°
d) 50.8° e) 99.6° f) 180°
a) 38.3° b) 86.6° c) 948° d) 0°
aandd 4. p=5

5 a) -3 b)%

A=58.7° B=190.0° G:=313°
Proof

Exercise 9.7 page 205

1. a) 83.8° b) 84.1° c) 45.6°
d) 72.0° e) 22.2°
Proof
a) 35.1° b) 50.5° c) 64.8°

Exercise 9.8 page 208

3 -1
1. a) r=|-1[+1] 1
2 0

b) (5,-3,2) o 46

2. a) fp b) 3

3.0 102

i P2

9
4 —4
5 a) r=|0|+A| 5
0 2
10
b) <
2 1
6 a) | _l4a|a
6 1
b) Proof o) 3.3

Summary exercise 9 page 209

4
i

4. a=2,b=-1
6

6. 0
-8

L J14=374(3sf)

W

3. p=1,q=5

5. %(Zi— j+2K)

Answers

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.
24,

25,

2
1| or any non-zero multiple of this vector
5

a) 1) 5i+5j+5k il) —5i+5j+5k
b) 705°
45°
-7
e
N
A=548%, B=827°, C=425°

a) OA=+6(=245), AB=+14(=374),
BC=/6(=2.45), 0C=/14(=3.74)

b) Parallelogram

) £LO=/B=402°/A=/C=1398°

35
d ruthrd
) 6

10++/66 =18.1(35.£.)

1 . 6
a) - b) 286 c) -
3j + 5k
a) 659° b) 144.7° so acute angle is 35.3°
o 659°
i 2
a) c=2 b) o 5
3
a) k=5 b) 12.6°
a) AC=ED=6
BF=CD=AE=8
AB=BC=EF=DF=5
b) 29.6°
a) %(2i+ j—2k)p %(—2i+j+2k) b) j
1 1
11
a) r= 2+ il b) [—5,5,—1]
1
10
a) (1,1,1) b) 54.7°
a) (1,L,2) b) 705°

e % (271 + 19§ + 14K) + A(i — 3j —k)



26.

27.

28.

i (1,3,2) ii) 6=123.1°
iii) 2.87 i 5
i) 734° ii) S (= ., iii) Proof
3 -2
—5
9
iv) | 16
9
13
9
—_
i) BC =-5i-4j+6k
—
BA =3i-4j

29,

iii)

30.

ii) 88.7°

iii) 8.77
5p —4p
i) -p [+4| —4p
-P 8p
Proof
i) (0,3-1)

ii) Proof
3p
iv) | -3p
3p
i) 2
Answers

311




LS
+ - .ﬂ
W o - ]
A= [ = = G & I
= ¥ T min s =
. z
A o e e = ! Qo e T v I (O I |- . P’ L
EAE NN S T NN C N = = H .m._ = + zx .m .m. m - .,..v./ 7 5 ﬁ = =+
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11. y*'= ln(x—zj

e

13, fy =Vx+1+1 14.

12, y"=x"+x+2

i 1
siny=———=+1
2x°

1

15. ¢=2tanx-1 16. §y5=2x5+14
17. & =In|w’ +1| +1 8 g 0K
x+1
- L G X 1 3
19. e¥=2e"+= 20, tany =——x + —
3 3 2 2

2. y'=e" +38

Exercise 10.4 page 235

1. a) i_T =-0.16x b) T =400-0.08x
X
¢ 200°C d) 68.9cm
2. a) %% . T b) ln|y| =e ™ +In(20e™)

c) t—w, lnl}r| — In(20e™), v — 20¢™
Initially there was 20 grams of Y, so the

proportion which will remain is 37%.

3. a) Ldm . pm = Aekt
m dt

b) Proof

o k=121x10"

1 dd _ 5
(d—150]dr_ 10

d) 40000 years

4. a) b) |d-150] = 142¢**"

c¢) d=8.21 metres

1 dN _ o~ 00372t
5. a) th—k b) N =2
c¢) 43.3 hours
1dv _ 3o —0.0223¢
6. a) A k b) v=25e

¢) 31.1seconds

dn _ r n =L 0240
R Y 9a

7. a)

c) 11.8days
d) Ast— es, n— Psoin the long run the whole
population will be infected.

Summary exercise 10 page 237
1. a) iy*:%xz—ﬁ—c b) tany=x*+c

c) siny= %e“ +c d)

f) y:Bv'x2+l

A
cosy=—

e e=Llevic
3

10.

11.

12.

13.

14.

15.

16.

17.

g y=B(.x2+6)4
-1 1,

h) —ln|c0539|=—x‘+2x+c
3 2

b)yé

T 3+2cosx
1

d) 2vi=—e'47

a) :x3+%x279

o e=devy2
3 3

y

e) e'=xe-e"+2

f) ylny-y=2In(x+1)-lnx-1-In4
L

Iny=2(x +1)3ﬁ2\/5

siny=xe*—e*+1.5

ye’—e’ =tanx-2

2 3
~y?=In
3)" x+1

2y =2x+ sin2x—§—1

In(y*+ 1) + tan”'y = Inx

dr

a) S —k(T —20) b) T=20+70e"*

c) 37.3°C d) 18.9 minutes
dv 5 _ 300
a) ;i kv b) e
¢) 18.75ms! d) 24 seconds
2000| 3£
a) Y_in@o00-N)  b) N= v¥)

dt B 39+(J7)

c) The majority have heard the rumour when
N=1001. When N=1001, t=3.8 hours.

a) Proof b) Proof
c) v=100-4x d) v=8ms'
a) Ldm_ _go5 b) m=12e""

m dt

c¢) 8.1 minutes
y=(5+e*)
ln(x+4)=%8—ésin69+ln4;x= 2.44

a) ln( S—XJ = lln(lo)r; proof
= 2

b) t=2.80 hours

a) Proof b) Proof

Answers
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11 Complex numbers

Skills check page 242

1. a) 2+2sin® b) sin'@
2. a) Proof b) Proof
3. a) 17 b) 81

Exercise 11.1A page 244

1. c¢)andd)

2. a) #2 b) +10i
d) +/75ior +543i

3 a) i b) -i
d) i e) 1

4 a) -1 b) -128i
d) -1024

5. a) =8 b) +8i
d) ++v32ior+442i

6. a) =7i b)
c) I4/2i d)

7. a) -2 b)
9 - d)

8 a) x+y=10,xy=40 b)

¢) Proof

Exercise 11.1B page 246

1. a) 5+i b)
o  —2+2410i d)
2. a) 4+2i b)
< -9+7i d)
3. a) z=10-12i b)
o z=-5i d)
4. a) 2realroots b)
c¢) 2 real roots d)
e) 2 complex roots f)
5 a) 2+i b) _i +
9+4/105 2
<) : d) e 1
o Llivi; g 14
6 6 4
1 N
g *5--Ji
Answers

c) 1
¢) Proof
¢ -71
c)  +J13i
c) i
o -27i
) */19i
+J18i or £34/2i
+4/51
49
=
256
Proof
4 —+J6i
— e
-5-i
—-6—3i
z=3+3i
z=8

2 complex roots
2 real roots

2 complex roots

6. a)
<)
e)
8)

Exercise 11.2 page 249

1. a)
9]
e)

2. a)
<)
e)

3. a)
9]
e)

4, a)
<)
e)

5. a)
9]
e)
g

6. a)
b)

7. a)
9]

8. a)
9]

9. a)

5+6i
st
1+5i

2+2i
9 - 6i
-6+ 2i

21+ 11i
-5-15i
3-33i
9+7i
1+7i
=14+ 101

b)
d)
f)

b)
d)
f)
b)
d)
f)
b)
d)

f)

h)

11 +4i
331
-1-8i

2+ 61

11 -8i
2+ 6i

-2 - 10i
24+ 41i
-2-5i
23-2i
5+ 101
15 + 451

—=i

Bl *=I= o]z
Ul |w

||—|
1=y
&, o

i) —4i
_a2 1y
3 3

b) -2+8i

63 16 .
9 165 169!
b) 2-11i
d) -278+29i

23 Al
b) = i
) 65 65



: 3
10. a) i b) = 1‘:;_

d —a___b j )

— 2]
a’+b> a4t

11. a) Re(w?) =a*- b, Im(i?) =2ab
b) Re(u—-u)=0,Im(u—1u)=2b

) Re(u® - (u')) =0, Im(e® — (u*)*) = 6a*b - 2b°

12. a) cos280+isin28
b) cosf—isinf
c) cos20+isin26

Exercise 11.3A page 253

1. a) +20i b) +2415i
¢ 1+2i,-1-2i d 2+i-2-1
€ 2+3i,-2-3i f) 5+2i,-5-2i
g 2-5i,-2+5i h) 6-i,-6+i
R VR RO
2. a) 2-i,-2+i b) -i, -2
3. 2+3i
4. Square roots of i are % + %i and — % = %
Square roots of —i are Ve = ﬁi and — ﬁ + £
74 2 2 2
5. a) 32 53 o5, o5V,
2 2t 2 2
b) -22+2/20,22-22i o =2
6. a=16,b=-2
7. 1+4i
1.1 wdld o
8. a) ey b) e
9. 3-i

10. a=5b=30 or a=-5b=-30

Exercise 11.3B page 254

1. a)

2. a) \E i \/Ei b) Proof

3. i, —5i b L
a) i,—5i ) 21

4., z=3+Lw=2-31

5. z=4i,w=-3i

6. a) z=1 b) z-1

7. 3,-2: 3,
272

1-V3i b) £-47482-8-0

s
L

8. a) -4 b) 1xi-1#i

9. —g, 5-2i

10. a) Proof b) 2,-1-2i

11. a) Proof b) +1,2-3i

12. a) -2 b) Proof c) —-2,+i,1+2i

Exercise 11.4 page 257

1. m .
54
4
3= XA
2 -
1_

2, u=5+3,u'=5-3L,2u=10+6i,—u=-5-3i
Im
74
6+ 2u><
5_

44

h
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Exercise 11.5 page 263
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b) Im(z) 4 ¢) zlies on a circle, centre (-5, 0), radius 2.
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f) zlies on a circle, centre (@, 0), radius a.
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¢) zlies on the half line from (0, —1) at an angle of b) zlies on the line Im(z) = 3 (or y = 3).
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e) zlies on the perpendicular bisector (or mediator)
of the line joining (1, 2) and (5, 2) (or x = 3).
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¢) zlies on the line x = 2 or within the shaded
region, i.c. z lies on the perpendicular biscctor
(mediator) of the line joining (1, 0) and (3, 0) or

to the left of the line.
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8. zlies within the shaded region.
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c) Greatest value of arg z is 1.46 rad.
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Loci of z and w are within or on the shaded circles. |z-5i|=3

m b) Greatest value of |z| is 8, least value of 2l is 2.
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Command words

calculate Work out from given facts, figures
and information.

describe Give the characteristics and main
features.

determine Establish with certainty.

evaluate Judge or calculate the quality/
importance/amount/value of something.

explain Set out purposes/reasons/mechanisms,
or make the relationship between things clear,
with supporting evidence.

identify Name/select/recognise.
justify Support a case with evidence/argument.

show that Provide structured evidence that
leads to a given result.

sketch Make a simple freehand drawing
showing the key features.

state Express in clear terms.

verify Confirm that a given statement/result
is true.

Mathematical terms

Argand diagram Geometric representation
of complex numbers on coordinate axes,

where the real part is plotted as the x-coordinate
and the imaginary part is plotted as the
y-coordinate.

argument Angle 8 between the real axis
(6=0) and the line joining the origin to the
point (r, 8) representing a complex number.
binomial expansion The result of multiplying
out a two-term expression raised to a power.

boundary condition An extra piece of
information which can be used to determine

the solution of a differential equation,

e.g. when x = 3, y = 5.6.

Cartesian form Way of expressing the position
of a point or equation of a curve (or straight line)
using x and y coordinates.

complex conjugates A pair of complex
numbers of the form a + bi and a - bi.

complex number Number of the form a + bi,
where a and b are real numbers and i =/-1.

converge Approach a definite value.

cosecant (cosec) 'ITrigonometric function that
is the reciprocal of sine (sin).

cotangent (cot) ‘'Trigonometric function that
is the reciprocal of tangent (tan).

decimal search A process using the sign-
change rule to identify the location of the root
of an equation as lying between neighbouring
integers, then between neighbouring values
correctto 1, 2, ... decimal places until the
required accuracy is achieved.

definite integral The difference between the
values of the integral at the upper and lower
limits of the variable.

differential equation An equation in which at

e dy
least one derivative appears, e.g. T

discriminant The value of b — 4ac in the
quadratic formula.

displacement vector Vector that gives the
movement (translation) from one position to
another position.

diverge Does not converge, and may
approach tee,

dividend The amount you want to divide up.

divisor The number by which another number,

a dividend, is divided.

explicit function A function in which the
dependent variable is expressed explicitly in
terms of the independent variable.

exponential decay Occurs for a geometric
progression where the common ratio, r, between
successive terms satisfies 0 < r < 1, and for an
exponential function * where 0 < b < 1.

exponential form Representation of a complex
number in the form re'®, where r is its modulus
and Ois its argument.

Glossary




exponential function A function in the
form f(x)=b&" for all real numbers x, where
b>0,b#1. The special case f(x)=e" has
the property that the rate of change of the
function (its derivative) is equal to the
function itself.

exponential growth Occurs for a geometric
progression where the common ratio, r, between
successive terms satisfies ¥ > 1, and for an
exponential function b* where b > 1.

factors Numbers that can be multiplied
together to get another number.

factor theorem A special case of the remainder
theorem. For a polynomial g(x), if g(c) = 0 then
(x — ¢) is a factor of g(x).

first-order differential equation A differential
equation that contains only a first derivative.

geometric progression A sequence of
numbers that has a common ratio between
successive terms.

imaginary number Number of the form bij,
where b is a real number and i = ~1.

implicit differentiation A method of finding

j_}’ when the dependent variable y is not
X

expressed explicitly in terms of the independent
variable x.

implicit function A function in which the
dependent variable is not expressed explicitly
in terms of the independent variable, e.g.
x*+3xy* -3y =0.

improper algebraic fraction A rational
algebraic fraction where the degree of the
numerator is greater than or equal to the degree
of the denominator.

improper integral An integral where either at
least one of the limits is infinite, or the function
to be integrated is not defined at a point in the
interval of integration.

indefinite integral An integral with no upper
or lower values of the variable.

initial condition An extra piece of
information relating to a start time (or position)
which can be used to determine the solution of a
differential equation, e.g. when f = 0, P = 250.

integration by parts A technique that allows
some products of functions to be integrated.

inverse function The function that maps the
range back onto the domain. If y = f(x) then -
is the inverse function of f if x = {~'(y). There are
conditions on f which need to be satisfied (such
as being a one-to-one function) for the inverse to

be well-defined.

iteration One step in the process of using an
iterative relation to find an approximate value to
the solution of an equation.

iterative relation A relation in the form

X1 = F(x, ), together with an initial value x . The
output of each iteration is used as the input of
the next.

logarithmic function The inverse of the
exponential function.

magnitude Size or length (e.g. of a vector).
modulus (of a complex number)  The length
of OP where P is the point representing the
complex number on an Argand diagram.

modulus (of a real number)
of the number.

The magnitude

modulus function The modulus function
f(x) = x is defined as f(x) = x for x = 0, and
f(x) = —x for x < 0.

modulus-argument form Polar coordinate
form for a complex number.

monotonic Moving in one direction only -
either increasing or decreasing. f(x) is
monotonically increasing means that f(x,) 2 f(x,)
if x, > x;.

natural logarithm Logarithm in base e.

parameter If variables x and y are related
via a third variable, e.g. t, then f is called a
parameter.



parametric differentiation A method of

finding j_}' when x and y are related via a third
X

variable.

parametric equation Any equation expressed
in terms of parameters.

partial fraction Each of two or more fractions
into which a more complex fraction can be
decomposed as a sum.

polar coordinate form Coordinates of the
form (r, 0), where r is the length of the line
joining the origin to the pointand 8 (-7 < €< )
is the angle between this line and the line 8= 0
(positive x-axis).

position vector Vector that gives the movement
(translation) from the origin to the position of a
point.

product rule If y is a product of two algebraic

expressions (# and v) we use the product rule to

i s A _ G . o
differentiate: if y = uv, then =t Y
quotient The result of dividing one number by

another.

quotient rule If y is a division of two algebraic
expressions (1 and v) we use the quotient rule to

dudv
; oy o B &y _ "o "ae
differentiate: if y = —, then -~ = ——==,
v X v
remainder theorem If g(x) is divided by

(x - ¢), the remainder is given by g(c).

scalar Quantity that has magnitude (size) only.

scalar product  For two vectors of magnitude
a and b that have an angle @ between their
directions, the value of ab cos 0 is the scalar
product.

secant (sec) Trigonometric function that is
the reciprocal of cosine (cos).

separable variables A differential equation

which can be rearranged to the form g(y)ch—y ={{x)
X
is said to have separable variables.

sign-change rule Tf f(x) is continuous in

an interval @ < x < f and f() and f(3) have
different signs, then f(x) = 0 has at least one root
between o and f3.

skew Geometric description of two lines in
three dimensions that do not meet and are not
parallel.

trapezium rule Gives an approximation to a
definite integral by using a number of trapezia to
estimate the area under the curve.
trigonometric function A function of an
angle.

unit vector Vector that has a magnitude of one
unit,

vector Quantity that has magnitude (size) and
direction.

vector equation Way to express the equation
of a straight line using vectors.

Glossary




Index

A

accuracy
and approximate roots 120-1,
125
and numerical integration 107-11
addition
of complex numbers 248, 249, 257
of vectors 183, 190-1
addition formulae 50-3
air resistance 231, 276
algebra 2
binomial expansions 144-6, 147-8,
149-50
factor theorem 12-14
modulus function 3-5, 6-7
partial fractions 137-8, 139,
140-1
as improper fractions 142-3
polynomial division 8-9, 10-11
real-world applications 136
remainder theorem 10-11
angles
between lines 205
between vectors 201-4, 205
approximate roots 118-22
iterative relationships 123-7,
129-30
area on graphs 93, 100-1, 162
trapezium rule for 107-11
Argand diagrams 255-7, 259
loci in 264-8
argument 259-60, 261, 262
asymptotes
on reciprocal functions 95, 96, 97
on secant graphs 42

B

base 21, 22, 25,26

binomial expansions 144-6, 147-8
and partial fractions 149-50

boundary conditions 224

Index

&

Cartesian coordinates 259
Cartesian form 193, 259-60, 262
chain rule 68, 82, 84, 173
circles as loci 264-5, 266, 267
coefficients, equating 136
and partial fractions 137-9, 140-1,
142-3
coincident lines 197, 198, 199
column vectors 183-4, 185, 190-1
complementary angle identities 49
complex conjugates 245, 252
on Argand diagrams 256
as roots of polynomial equations
254
complex numbers 241, 2434, 245-6
Argand diagrams 255-7, 259,
264-8
calculating with 248-9, 261-3
on Argand diagrams 257
equations with 251-3, 254
as loci 264, 265, 266, 267
forms of 259-61
in real-life 241, 276-7
square roots of 252-3
composite functions 45, 68
compound angle formula 52
constant of integration 92, 95
and differential equations 217, 221,
223
particular solutions 224-6, 230
constant of proportionality 230
convergence
of binomial expansions 144
of iterative functions 123-6,
129-30
cosecant 41-2,44-5
geometric interpretation of 49
graphs of 43
in trigonometric identities 47, 49
cosine 40-1, 58-60
addition formulae 50-3
differentiating 79-80

double angle formula 55-6
geometric interpretation of 49
graphs of 42
in identities 47, 49
and integration 102, 103-5
integration 99-101
in differential equations 222, 226
and identities 102, 103-5
by parts 168
by substitution 177-8

cotangent 41-2,43-5
geometric interpretation of 49
graphs of 43
in trigonometric identities 47, 49
and integration 102, 105

critical values 5, 29

curves
gradient of tangents 83, 86
parametric equations of 84

D

dam construction 91

damped oscillations 277

decay, exponential 19-20, 33, 221

decimal search 120-1

definite integrals 92-3
and integration by parts 170
reciprocal functions 95-6, 97-8
and substitution 173, 174-5
trigonometric functions 100-1,

103-5

differential equations 215, 216-20
modelling with 229-35, 277
particular solutions to 224-7
with separable variables 221-3

differentiation 68, 91
of exponential functions 69-70
implicit differentiation 81-4, 160,

161

and integration 92
of logarithmic functions 71-2
parametric 84-6
product rule 73-5, 167



in implicit differentiation 82, 83
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of trigonometric functions 79-80,
83-4
direction vectors 193-5
angle between 205
of parallel and coincident lines 198,
199
discriminant 242, 243
displacement 183, 184, 185
displacement vectors 185
distance 183
of points from lines 206-8
dividend 8
division
of complex numbers 248, 249, 261,
262, 263
long division 2, 8, 142, 143
of polynomials 8-9, 10-11
divisors 8-9
domain 21
dot product 201
double angle formula 55-6, 102, 105

E

e (mathematical constant) 25
integrating functions with 164-5
e 923
by parts 168, 171

electromagnetism 276

enlargement 262-3

equal vectors 188

equating coefficients 136
and partial fractions 137-9, 140-1,

142-3

equations
approximate roots 118-22
iterative relationships 123-7,

129-30
and complex numbers 251-3, 254
as loci 264, 265, 266, 267
with imaginary numbers 243
linear 33-5
of lines 83
logarithms in 27, 29-31, 33-5
modulus in 3-4
of normals 83

numerical solutions of 117
parametric equations 84-6
polynomial 13, 254
trigonometric 41, 44-5, 58-60
addition formulae for 53
double angle formula for 55-6
using identities 48
error and trapezium rule 109-11
explicit functions 81
exponential form (complex numbers)
260-2
exponential functions 19-20, 21-3
differentiation of 69-70
substitution into 118
exponential growth and decay 18,
19-20
and differential equations 221
taking logarithms 33

F
factor theorem 12-14
factorisation 12-13
factors 8-9,12-14
and partial fractions 137-8, 139,
140-1
with improper fractions 142-3
Fibonacci sequences 134-5
first-order differential equations
216-20
modelling with 229-35, 277
particular solutions to 224-7
with separable variables 221-3
free-fall motion 231
functions
composite 45, 68
explicit 81
exponential 19-20, 21-3
differentiation 69-70
substitution into 118
implicit 81-4
inverse
exponential and logarithmic 21,
23,25
trigonometric 41, 83-4
iterative 123-6, 129-30
logarithmic 21-4
differentiating 71-2

substitution into 118
modulus 3-5
monotonic 29
roots of 119-22
substitution into 117-18

G

general solutions 217, 224
real-life models 229, 231
geometric progressions 19
geometric representation
of complex numbers 255-7
multiplying and dividing 262-3
trigonometric functions 49
vector addition and subtraction
190-1
golden ratio 135
gradient
and convergence 130
and needle diagrams 216-19, 222
of tangents 83, 86
graphs
for approximate roots 119-22
area on 93, 100-1, 162
trapezium rule for 107-11
Cartesian coordinates 259
of cosecant 43
of cosine 42
of cotangent 43
of exponential growth and decay
19,20
linear 3, 4,6-7,33-5
of logarithms 34-5
and exponential functions 21,
23,25
of modulus functions 3, 4, 6-7
of reciprocal functions 95, 96, 97
of secant 42, 100
of sine 101
gravitational lensing 2
gravity, motion under 231
growth, exponential 19-20, 33, 221

H
half-lines 267
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I

identities 47
trigonometric 41, 47-8, 49
in integration 102-5
imaginary numbers 243-4, 245, 257
imaginary parts 245, 248, 249, 251-2
implicit differentiation 81-4, 160, 161
implicit functions 81-4
improper algebraic fractions 142-3
improper integrals 92, 93, 96,99
indefinite integrals 92, 95
indices 18, 23
inequalities
and complex numbers 264, 265, 268
logarithms in 29-30
and modulus function 4-5
initial conditions 217, 224-7
real-life models 229, 230, 231, 232,
233, 234, 235
integrals 92
improper 92, 93, 96, 99
indefinite 92, 95
integration 91, 92
of 1/{ax + b) 95-8
of 1/(x* + a*) 160-3
of " 92-3
of kf*(x)/f(x) 164-6
numerical 107-11
partial fractions for 155-8
by parts 167-71
real-world applications 154
solving differential equations 217,
221-3
modelling 229, 230, 231, 232,
233-5
substitution in 173-8
trapezium rule 107-11
trigonometric functions 99-101,
102-5, 160-3, 165
in differential equations 223, 226
integration by parts 168, 171
by substitution 177-8
intersecting lines 197-9
inverse functions
exponential and logarithmic 21, 23
base e 25
trigonometric 41, 83—4, 160-3
iterative functions 123-6, 129-30

Index

L

laws of logarithms 23-4, 26, 72
laws/rules of indices 18, 23
linear equations 33-5
linear graphs
of logarithms 33-5
of modulus functions 3, 4, 6-7
lines
angle between 205
coincident lines 197, 198, 199
distance to points from 206-8
equations of 83
graphs of 3,4, 6-7, 33-5
half-lines 267
intersecting lines 197-9
parallel lines 197, 198, 199
perpendicular lines 83, 204, 206-8
skew lines 197, 199, 204, 205
loci in Argand diagrams 264-8
logarithmic functions 21-4
differentiating 71-2
substitution into 118
logarithmic scales 18, 26
logarithms 25-8
in equations 27, 29-31, 33-5
integration of 169, 170
as integration product 95-8, 164-5
laws of 23-4, 26,72
long division 2, 8, 142, 143

M

magnitude 3
of vectors 183, 187-8
Mandelbrot sets 241
modelling
with differential equations 229-35
exponential change 19
tidal behaviour 66-7
modulus 3
of complex numbers 259-60, 261,
262
modulus function 3-5
modulus-argument form 259-60, 262
monotonic functions 29
motion under gravity 231
multiplication

of complex numbers 248, 249, 261,
262-3
on Argand diagrams 257
of vectors by scalars 183, 187-8
musical theory and production 40

N

natural logarithms 25
differentiation of 71-2
integration of 169, 170
as integration product 95-8, 164-5
needle diagrams 216-19, 222
normals, equations of 83
notation, vector 183-6
numerical integration 107-11
numerical solutions of equations 117
approximate roots 118-22

P

parallel lines 197, 198, 199
parallel vectors 188
parameters 84
parametric differentiation 84-6
parametric equations 84-6
partial fractions 137-8, 139, 140-1
and binomial expansions 149-50
as improper fractions 142-3
integration using 155-8
particular solutions 224-7
on needle diagrams 217, 218, 219,
222
real-life models 229, 230, 231, 232,
234,235
path integration 182
perpendicular bisectors as loci 266
perpendicular lines 83, 204, 206-8
perpendicular vectors 203-4
points
distance to lines from 206-8
of intersection 197, 198
polar coordinates 259
polar form 259, 260, 261
polynomial equations 13,254
polynomials 8-9, 10-11
factor theorem 12-14
position vectors 185, 186, 190-1



on Argand diagrams 257
and distance of points from lines
206-8
and points of intersection 198
and vector equations of straight
lines 193-5
power functions 23, 25, 29
power laws 33, 34
powers 18
of complex numbers 261, 262
product rule 73-5, 104, 167
in implicit differentiation 82, 83

Q

quadratic equations 245-6, 252
discriminant 242, 243
quotient rule 76-7
quotients 8-9
differentiating 76-7

R

range 21
rate of change 68
and differential equations 218, 219,
220
real-life models 229-35
real numbers 243, 245
real parts 245, 248, 249, 251-2
real-imaginary form 260
real-life maths
algebra 136
complex numbers in 241, 276-7
differential equations 277
modelling 229-35
differentiation 68
Fibonacci sequences 134-5
integration 154
tidal behaviour 66-7
reciprocal functions
graphs of 95, 96, 97
integration of 95-8
trigonometric 41-5, 49
in identities 47-8, 49
integration of 99
reflections on Argand diagrams 256
remainder theorem 10-11

remainders 2, 8-9, 10-11
resonance 277
roots
approximate 118-22
by iterative relationships 123-7,
129-30
and complex numbers 245, 252
equations with no real roots 243
of polynomial equations 254
rotation 257, 262-3
rules/laws of indices 18, 23

=

scalar product 201-4, 206-8
scalars 183, 187-8
secant 41-2,44-5
as differentiation product 79, 80, 83
geometric interpretation of 49
graphs of 42, 100
in identities 47-8, 49
and integration 102, 103
integration of sec* 99-101, 103
separable variables 221-3
sequences, convergence of 123-6,
129-30
sign-change rule 119-21
sine 40-1, 58-60
addition formulae 50-3
differentiation 79-80
double angle formula 55-6
geometric interpretation of 49
graphs of 101
in identities 47, 49
and integration 102, 103-5
integration 99-101
in differential equations 223, 226
by parts 171
by substitution 177-8
using identities 102, 103-4, 105
in models of tidal behaviour 66-7
skew lines 197, 199, 204, 205
spiral enlargement 263
square roots of complex numbers
252-3
substitution
into functions 117-18
for integration 173-8

subtraction
of complex numbers 248, 249, 257
of vectors 183, 190-1
surds 242
symmetry
of reciprocal functions 95, 96
of solutions to differential equations
217,219

T

tangent 40-1
addition formulae 51-3
differentiation 79-80, 83
double angle formula 55-6
geometric interpretation of 49
in identities 47-8, 49
integration of 103, 165
inverse functions 41, 83-4, 160-3
tangents to curves 83, 86
terminal velocity 231
tidal behaviour 66-7
translation, vectors describe 182
trapezium rule 107-11
trial and improvement 119
trigonometric equations 41, 44-5,
58-60
addition formulae for 53
double angle formula for 55-6
using identities 48
trigonometric functions 40-5
differentiation 79-80, 83—4
geometric interpretation of 49
integration 99-101, 102-5, 160-3,
165
in differential equations 223, 226
by parts 168, 171
by substitution 177-8
inverse 41, 83-4, 160-3
reciprocal 41-5
in identities 47-8, 49
substitution into 118
trigonometry 40-5, 49, 58-60
addition formulae 50-3
double angle formula 55-6
identities 41, 47-8, 49
integration with 102-5
in models of tidal behaviour 66-7
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U
unit vectors 183, 187, 188

Vv

vector equations 193-5, 198-9
angle between lines 205
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perpendicular lines 204, 206-8
vectors 182-6
angle between 201-4, 205
on Argand diagrams 257
and distance from points to lines
206-8
and intersecting lines 197-9

magnitude of 187-8
scalar products 2014
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